使用Carbide C++创建Symbian S60小程序教程

需积分: 6 4 下载量 141 浏览量 更新于2024-09-28 收藏 1.37MB PDF 举报
"这篇文档提供了一个使用Carbide C++在Symbian平台上开发S60应用程序的基础教程。教程涵盖了从安装必要的开发工具到创建一个新的Symbian C++项目的步骤,包括选择模板、设定工程参数以及编译项目。" 本文档详细介绍了如何使用Carbide C++这一集成开发环境(IDE)来编写Symbian S60平台的应用程序。首先,开发者需要安装三个关键工具:ActivePerl、S60 SDK和Carbide C++。ActivePerl是一个用于Windows的Perl解释器,对于Symbian开发是必需的。S60 SDK提供了开发Symbian S60应用所需的环境,而Carbide C++则是诺基亚提供的专用IDE,特别设计用于Symbian OS的C++编程。 在安装过程中,文档强调了不要改变默认安装路径,并指出下载的ActivePerl和Carbide C++有21天的试用期限。接下来,文档指导用户如何在Carbide C++中创建新的Symbian C++项目。通过File->New->Project,选择SymbianOS->SymbianOSC++Project,然后选取S60 3rd Edition的GUI应用程序模板。用户需要输入工程名称,如"first",并选择已安装的SDK,即S60 SDK。 在工程创建过程中,用户可以设置工程的基本属性和目录。按照默认设置即可,然后点击Finish完成工程创建。创建成功后,用户可以通过右键点击工程名,选择Build Project来编译代码。编译过程结束后,用户将得到一个可运行的Symbian应用。 这个实例教程对初学者来说是一个很好的起点,它清晰地展示了Symbian开发的基本流程。不过,需要注意的是,文中提到的版本可能已经过时,实际开发时应使用最新版本的工具和SDK。此外,现代的Symbian开发可能已经转向了其他平台或工具,如Qt Creator,因为Symbian操作系统在智能手机市场中的份额已经显著减少。尽管如此,理解Symbian开发的历史和基础知识仍然有助于理解移动设备的早期开发环境和流程。

n the present research, a hybrid laser polishing technology combining pulsed laser and continuous wave laser was applied to polish the surface of laser directed energy deposition (LDED) Inconel 718 superalloy components. The surface morphology, microstructure evolution and microhardness of the as-fabricated, the single pulsed laser polishing (SPLP) and the hybrid laser polishing (HLP) processed samples were investigated. The results revealed that the as-fabricated sample has a rough surface with sintered powders. In the matrix, the NbC carbide and Cr2Nb based Laves phase array parallel to the build direction and the small γʺ-Ni3Nb particles precipitate in matrix uniformly. The surface roughness of the as-fabricated sample is 15.75 μm which is decreased to 6.14 μm and 0.23 μm by SPLP and HLP processing, respectively. The SPLP processing refines the grains and secondary phase significantly in the remelted layer which is reconstructured with the cellular structure and plenty of substructures. The HLP processing also refines the grain and secondary phase but the secondary phases still exhibit array distribution. In addition, the tangled dislocations pile up along the interface of secondary phases. Compared with the as-fabricated sample, the SPLP processing decreases the surface microhardness but the HLP processing increases the surface microhardness, and the Young's elasticity modulus of surface layer is improved by SPLP and HLP processing to 282 ± 5.21 GPa and 304 ± 5.57 GPa, respectively. 翻译

2023-07-25 上传

WIDE bandgap devices, such as silicon carbide (SiC) metal–oxide–semiconductor field-effect transis- tors (MOSFETs) present superior performance compared to their silicon counterparts [1]. Their lower ON-state resistance and faster switching capability attract lots of interest in high-power- density applications [2]. Faster switching speed enables lower switching loss and higher switching frequency, which is benefi- cial to high-efficiency and high power density. However, severe electromagnetic interference (EMI) and transient overvoltage issues caused by fast switching speed jeopardize the power quality and reliability of converters [3], [4]. Therefore, there is a tradeoff between efficiency and reliability in the choice of switching speed. An optimized design should ensure theoperation within both safe-operation-area and EMI limits, and switching loss should be as small as possible. A prediction method of switching performance is important and helpful for designer to evaluate and optimize converter design. The most concerned switching characteristics are switching loss, dv/dt, di/dt, and turn-ON/OFF overvoltage generally. These characteristics are crucial for the design of heatsink, filter, and gate driver. Related discussions have been presented in many existing research articles as following.请将这一段进行以下要求,Move analysis 语步(内容成分)分析; Language devices和实现该功能的语言手段(某些关键专有名词提供汉语翻译)

2023-06-13 上传