xvi
Fig. 10.9 Frequency response and coherence for composite
window result (Bo-105 helicopter). . . . . . . . . . . . . . . . . . . . . 272
Fig. 10.10 Structural system identification using composite windowing . . . 273
Fig. 10.11 Composite-window result for spectral analysis . . . . . . . . . . . 274
Fig. 11.1 Comparison of identified transfer-function model and
frequency-response data for stable pendulum . . . . . . . . . . . . 286
Fig. 11.2 ADOCS pitch-rate response and transfer-function
model (hover) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Fig. 11.3 Analysis of ADOCS handling qualities based on
equivalent system data (from Ref. 154) . . . . . . . . . . . . . . . . . 290
Fig. 11.4 Effect of equivalent time delay on handling qualities
(from Ref. 155). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Fig. 11.5 ADOCS transfer-function model verification (hover) . . . . . . 292
Fig. 11.6 Roll-rate and sideslip transfer-function models
(XV-15, cruise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Fig. 11.7 Error functions for transfer-function models
(XV-15, cruise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Fig. 11.8 Block diagram representation of rotor-body coupling . . . . . . 301
Fig. 11.9 Root locus of rotor-body coupling with increasing
rotor-flap stiffness (following Heffley et al.
21
) . . . . . . . . . . . . 302
Fig. 11.10 Cascade model of rotor-body response applicable to
small flap stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Fig. 11.11 Comparison of coupled rotor-body and quasi-steady model
structures for the UH-1 helicopter . . . . . . . . . . . . . . . . . . . . . 304
Fig. 11.12 OH-58D helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Fig. 11.13 Roll-response transfer-function models (OH-58D, hover). . . 307
Fig. 11.14 Helicopter roll-attitude response model
(
Bo-105, hover). . . . 309
Fig. 11.15 Root-locus varying roll-rate gain (Bo-105, 80 kn) . . . . . . . . . 310
Fig. 11.16 Frequency-sweep input and wing-bending strain-gauge
response (XV-15, 180 kn). . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Fig. 11.17 Aeroelastic transfer-function model (XV-15, 180 kn) . . . . . . 313
Fig. 11.18 Symmetric wing beam mode (XV-15, 180 kn). . . . . . . . . . . . 314
Fig. 11.19 AFCS actuator model identification . . . . . . . . . . . . . . . . . . . . 316
Fig. 11.20 Simulation model of actuator . . . . . . . . . . . . . . . . . . . . . . . . . 316
Fig. 12.1 Frequency-response results for stable pendulum
identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Fig. 12.2 Closed-loop roll-response identification (XV-15, hover) . . . . 351
Fig. 12.3 NASA V/STOL system research aircraft (VSRA)
(NASA photo). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Fig. 12.4 Aeroelastic response identification (VSRA, 120 kn) . . . . . . . 354
Fig. 12.5 Root locus for roll-rate feedback to aileron
(VSRA, 120 kn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Fig. 13.1 Identification model structure for cruise (XV-15) . . . . . . . . . 381
CIFER TextbookLOF.fm Page xvi Friday, June 16, 2006 3:13 PM
Downloaded by NORTHWESTERN POLYTECHICAL UNIV. on November 25, 2015 | http://arc.aiaa.org | DOI: 10.2514/4.861352