Matlab图像模板匹配算法深度解析

版权申诉
0 下载量 147 浏览量 更新于2024-10-17 收藏 417KB RAR 举报
资源摘要信息:"Matlab图像匹配技术概述" Matlab是MathWorks公司推出的一款高性能数值计算和可视化软件,广泛应用于工程、科学和教育等领域。图像处理是Matlab中的一个重要应用方向,其中图像匹配是图像处理中的核心问题之一。图像匹配技术主要用于从另一幅图像(通常是较大的场景图像)中找到与给定图像(模板图像)相匹配的区域。 图像匹配算法在很多领域都有应用,如图像识别、计算机视觉、遥感图像处理等。在Matlab中实现图像匹配,主要可以通过模板匹配算法进行。模板匹配算法通过在搜索图像中移动模板图像,并计算模板图像与搜索图像重叠部分的相关性,以此来确定匹配位置。 模板匹配算法通常可以分为以下几种类型: 1. 最小二乘法:通过最小化模板图像与搜索图像之间差的平方和来确定最佳匹配位置。 2. 互相关法:测量两幅图像的相似度,即通过计算它们的像素值的乘积和来找出最佳匹配位置。 3. 绝对差值和法:计算模板图像与搜索图像对应区域的像素绝对差值之和,最小的差值和对应最佳匹配位置。 4. 标准化互相关(Normalized Cross-Correlation,NCC):是一种归一化处理的方法,具有尺度不变性和旋转不变性,适用于更复杂的匹配情况。 在Matlab中,可以利用内置函数imregionalmax()或者自定义函数来实现上述算法。在Matlab的图像处理工具箱中,还提供了专门的函数imtemplate()和imregionalmax()用于进行模板匹配。 模板匹配算法的实现步骤通常包括: 1. 读取模板图像与搜索图像。 2. 将模板图像在搜索图像上进行滑动,每次移动一个像素。 3. 对于每个位置,计算模板图像与搜索图像重叠区域的相似度。 4. 选取相似度最高的位置,作为匹配结果。 模板匹配的性能受到许多因素的影响,例如图像的噪声、光照变化、图像分辨率等。因此,在实际应用中,通常需要对模板图像和搜索图像进行预处理,如滤波去噪、增强对比度、边缘检测等,以提高匹配的准确性和鲁棒性。 在本压缩包中,我们主要关注的是Matlab图像匹配的实现细节。文档"图像处理技术——模板匹配算法.pdf"提供了对模板匹配算法的详细介绍,这包括算法的理论基础、实现方法以及Matlab中的具体应用。通过阅读这份文档,用户可以了解如何在Matlab中应用模板匹配算法解决实际问题,从而更加深入地掌握Matlab图像处理的技巧。 请注意,由于压缩包中实际文件名"***.txt"和"matlab11mbpp"并未提供具体的内容,我们无法就这些文件内容进行知识性描述。但根据文件名推测,其中可能包含了Matlab图像匹配的相关代码示例、教程或是其他相关资源。用户在获取并解压压缩包后,可以查看具体的文件内容以获取更多细节。

用中文总结以下内容: A number of experimental and numerical investigations have been conducted to study the MBPP stack and wavy flow field characteristics with various designs [10,11]. T. Chu et al. conducted the durability test of a 10-kW MBPP fuel cell stack containing 30 cells under dynamic driving cycles and analyzed the performance degradation mechanism [12]. X. Li et al. studied the deformation behavior of the wavy flow channels with thin metallic sheet of 316 stainless steel from both experimental and simulation aspects [13]. J. Owejan et al. designed a PEMFC stack with anode straight flow channels and cathode wavy flow channels and studied the in situ water distributions with neutron radiograph [14]. T. Tsukamoto et al. simulated a full-scale MBPP fuel cell stack of 300 cm2 active area at high current densities and used the 3D model to analyze the in-plane and through-plane parameter distributions [15]. G. Zhang et al. developed a two-fluid 3D model of PEMFC to study the multi-phase and convection effects of wave-like flow channels which are symmetric between anode and cathode sides [16]. S. Saco et al. studied the scaled up PEMFC numerically and compared straight parallel, serpentine zig-zag and straight zig-zag flow channels cell with zig-zag flow field with a transient 3D numerical model to analyze the subfreezing temperature cold start operations [18]. P. Dong et al. introduced discontinuous S-shaped and crescent ribs into flow channels based on the concept of wavy flow field for optimized design and improved energy performance [19]. I. Anyanwu et al. investigated the two-phase flow in sinusoidal channel of different geometric configurations for PEMFC and analyzed the effects of key dimensions on the droplet removal in the flow channel [20]. Y. Peng et al. simulated 5-cell stacks with commercialized flow field designs, including Ballard-like straight flow field, Honda-like wavy flow field and Toyota-like 3D mesh flow field, to investigate their thermal management performance [21]. To note, the terms such as sinusoidal, zig-zag, wave-like and Sshaped flow channels in the aforementioned literatures are similar to the so called wavy flow channels in this paper with identical channel height for the entire flow field. The through-plane constructed wavy flow channels with periodically varied channel heights are beyond the scope of this paper [22,23].

2023-02-10 上传
2023-02-10 上传
2023-02-10 上传

用中文翻译:A coupled three-dimensional model is developed to study the internal parameter distributions of the MBPP fuel cell stack, considering fluid dynamics, electro-chemical reactions, multi-species mass transfer, twophase flow of water and thermal dynamics. The model geometry domains include anode MBPP, anode gas wavy flow field (5 parallel flow channels), anode GDL, anode catalyst layer (CL), membrane, cathode CL, cathode GDL, cathode gas wavy flow field (5 parallel flow channels), cathode MBPP and the two-layered coolant wavy flow fields at anode/cathode sides. According to the stack design, the design parameters of wavy flow fields for anode and cathode sides are the same but the phase deviation between their wave cycles presents 180◦. The two wavy flow fields of coolant, at the respective back sides of the anode and cathode plates, form the intercrossed two-layered coolant flow fields inside the MBPP, due to the phase difference of 180◦ between the wave cycles (Fig. 3). The mismatched flow field patterns between the neighbored fluid flows lead to complicated geometry and mesh building. The presented model geometry is divided into several layers (xz plane) according to the different domain materials so that the thin metallic plate and fluid domains with complicated 3D morphologies could be finely meshed layer by layer. As the real geometry of the experimental stack is too large for calculation, the modeled flow field consists of 5 parallel wavy channels, each of which includes 2 wave periods and corresponding inlet/outlet portions as well. To study the detailed thermal behavior of the presented design, the two-layered coolant fluid flow at the back side of the anode plate is considered and so is for the cathode plate. The counter flow operation is conducted where the air flows at the same direction with coolant but the opposite with hydrogen, shown in Fig. 3 (b).

2023-02-10 上传