基于-piecewise 平滑图像模型的单幅图像自动噪声估计和去噪

需积分: 32 3 下载量 135 浏览量 更新于2024-07-21 收藏 5.3MB PDF 举报
"图像去噪算法和技术" 图像去噪是图像处理领域中的一项重要技术。随着数字摄影技术的发展,图像去噪变得越来越重要。传统的图像去噪算法通常假设加性白高斯噪声(AWGN)过程独立于实际的RGB值。但是,这种方法不能有效地去除今天的CCD数码相机产生的颜色噪声。 本文提出了一种统一的框架,旨在自动估算和去除单幅图像中的颜色噪声。该框架基于分段平滑图像模型,引入了噪声级函数(NLF),该函数描述噪声级别与图像亮度之间的关系。然后,我们通过拟合每个分段图像方差的标准差来估算实际NLF的上界。 在去噪过程中,我们使用投影像素值到每个分段RGB值的线性拟合来显著地去除颜色噪声的色度分量。然后,我们构建了一个高斯条件随机场(GCRF),以从嘈杂的输入图像中获得基础清洁图像。 本文还进行了广泛的实验,以Evaluate该算法的性能。实验结果表明,该算法优于当前最先进的去噪算法。 本文的贡献在于: 1. 提出了一个统一的框架,自动估算和去除单幅图像中的颜色噪声。 2. 引入了噪声级函数(NLF),描述噪声级别与图像亮度之间的关系。 3. 使用高斯条件随机场(GCRF)来获得基础清洁图像。 4. 实验结果表明,该算法优于当前最先进的去噪算法。 本文的结论是,提出的算法可以有效地去除单幅图像中的颜色噪声,提高图像质量。 知识点: 1. 图像去噪的重要性 图像去噪是图像处理领域中的一项重要技术,旨在去除图像中的噪声,提高图像质量。 2. 传统图像去噪算法的局限性 传统的图像去噪算法通常假设加性白高斯噪声(AWGN)过程独立于实际的RGB值。但是,这种方法不能有效地去除今天的CCD数码相机产生的颜色噪声。 3. 噪声级函数(NLF) 噪声级函数(NLF)是描述噪声级别与图像亮度之间的关系的连续函数。 4. 高斯条件随机场(GCRF) 高斯条件随机场(GCRF)是一种概率图模型,用于描述图像中的噪声和清洁图像之间的关系。 5. 图像去噪算法的评估 图像去噪算法的评估通常通过峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标来进行。

With the rapid development of China's economy, the per capita share of cars has rapidly increased, bringing great convenience to people's lives. However, with it came a huge number of traffic accidents. A statistical data from Europe shows that if a warning can be issued to drivers 0.5 seconds before an accident occurs, 70% of traffic accidents can be avoided. Therefore, it is particularly important to promptly remind drivers of potential dangers to prevent traffic accidents from occurring. The purpose of this question is to construct a machine vision based driving assistance system based on machine vision, providing driving assistance for drivers during daytime driving. The main function of the system is to achieve visual recognition of pedestrians and traffic signs, estimate the distance from the vehicle in front, and issue a warning to the driver when needed. This driving assistance system can effectively reduce the probability of traffic accidents and ensure the safety of drivers' lives and property. The main research content of this article includes the following aspects: 1. Implement object detection based on the YOLOv5 model. Conduct research on convolutional neural networks and YOLOv5 algorithm, and develop an object detection algorithm based on YOLO5. Detect the algorithm through road images, and analyze the target detection algorithm based on the data returned after training. 2. Estimate the distance from the front vehicle based on a monocular camera. Study the principle of estimating distance with a monocular camera, combined with parameters fed back by object detection algorithms, to achieve distance estimation for vehicles ahead. Finally, the distance estimation function was tested and the error in the system's distance estimation was analyzed. 3. Design and implementation of a driving assistance system. Based on the results of two parts: target detection and distance estimation, an intelligent driving assistance system is constructed. The system is tested through actual road images, and the operational effectiveness of the intelligent driving assistance system is analyzed. Finally, the driving assistance system is analyzed and summarized.

2023-06-03 上传