Python摄像头实时物体检测与测距
版权申诉
5星 · 超过95%的资源 48 浏览量
更新于2024-08-26
收藏 97KB PDF 举报
"该资源是关于使用Python进行摄像头物体测距的教程,主要涉及计算机视觉技术,特别是人体检测。代码示例中运用了OpenCV库,包括HOG(Histogram of Oriented Gradients)特征描述符和非极大值抑制(NMS)算法来实现目标检测。"
在Python中,通过摄像头进行物体测距通常涉及到计算机视觉和图像处理技术。在这个例子中,我们看到一个基于OpenCV库的程序,用于检测和识别摄像头画面中的人体。以下是关键知识点的详细解释:
1. **OpenCV**: OpenCV(开源计算机视觉库)是一个强大的库,支持各种计算机视觉任务,如图像处理、特征检测、物体识别和跟踪等。在这个例子中,OpenCV被用来捕获视频流、处理图像以及执行人体检测。
2. **HOG (Histogram of Oriented Gradients)**: HOG是一种特征提取方法,用于物体检测,特别是在行人检测中非常有效。它通过计算和统计图像局部区域的梯度方向直方图来描述图像。在这个程序中,`cv2.HOGDescriptor()`被用来创建HOG描述符,`setSVMDetector()`用于加载预训练的SVM(支持向量机)分类器,用于识别人体。
3. **非极大值抑制 (Non-Maximum Suppression, NMS)**: 在物体检测中,NMS是用来去除重叠检测框的技术。当多个检测框覆盖同一个物体时,NMS会选择具有最高置信度(或分数)的框,剔除其他重叠的框。在这里,`non_max_suppression()`函数用于去除不必要的检测结果,确保每个物体只有一个检测框。
4. **VideoCapture**: `cv2.VideoCapture(0)`用于初始化摄像头,`0`表示默认的内置摄像头。`cap.read()`则读取每一帧的视频数据。
5. **resize**: `imutils.resize()`函数用于调整图像尺寸,保持宽高比,方便后续处理。
6. **detectMultiScale**: 这是HOG描述符的一个方法,用于在图像上检测物体。它返回检测到的矩形框坐标和相应的权重。
7. **rectangle**: `cv2.rectangle()`函数在图像上画出矩形框,表示检测到的人体位置。
8. **imshow**: `cv2.imshow()`显示图像,`waitKey()`函数用于处理键盘事件,如按下'q'键退出程序。
9. **release** 和 **destroyAllWindows**: `cap.release()`关闭摄像头,`cv2.destroyAllWindows()`关闭所有打开的窗口。
这个程序展示了如何利用Python和OpenCV结合HOG特征和非极大值抑制技术进行实时人体检测,可以进一步扩展到其他物体的测距应用。通过调整参数和模型,可以优化检测效果,适应不同的场景需求。
2024-03-27 上传
2019-08-11 上传
2024-08-26 上传
2023-08-30 上传
2023-08-24 上传
2023-09-02 上传
2023-08-22 上传
2023-08-24 上传
2023-07-27 上传
一诺网络技术
- 粉丝: 0
- 资源: 2万+
最新资源
- Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现
- 深入理解JavaScript类与面向对象编程
- Argspect-0.0.1版本Python包发布与使用说明
- OpenNetAdmin v09.07.15 PHP项目源码下载
- 掌握Node.js: 构建高性能Web服务器与应用程序
- Matlab矢量绘图工具:polarG函数使用详解
- 实现Vue.js中PDF文件的签名显示功能
- 开源项目PSPSolver:资源约束调度问题求解器库
- 探索vwru系统:大众的虚拟现实招聘平台
- 深入理解cJSON:案例与源文件解析
- 多边形扩展算法在MATLAB中的应用与实现
- 用React类组件创建迷你待办事项列表指南
- Python库setuptools-58.5.3助力高效开发
- fmfiles工具:在MATLAB中查找丢失文件并列出错误
- 老枪二级域名系统PHP源码简易版发布
- 探索DOSGUI开源库:C/C++图形界面开发新篇章