问题描述】 给定n个城市(从0到n-1),3元组[A, B, C]表示城市A和城市B之间存在道路,且成本为C。计算从0号城市出发,旅行完每个城市一遍,最后回到0号城市的最小成本与路径。如果不存在最优方案,输出-1.

时间: 2024-02-15 16:03:37 浏览: 33
这是一个典型的旅行商问题(TSP)的变体,可以使用动态规划(DP)来解决。具体来说,我们可以定义状态`dp[i][j]`表示已经访问过的城市集合为`i`,当前所在城市为`j`时,从0号城市出发,旅行完每个城市一遍,最后回到0号城市的最小成本。 状态转移可以考虑枚举下一个要访问的城市`k`,然后从`dp[i-{j}][k]`转移而来,其中`i-{j}`表示从集合`i`中去掉`j`这个城市。转移方程为: ``` dp[i][j] = min(dp[i-{j}][k] + cost[k][j]) ``` 其中`cost[k][j]`表示从城市`k`到城市`j`的成本。最终的答案为`dp[{0, 1, ..., n-1}][0]`。 需要注意的是,如果存在无法到达的城市,或者无法回到0号城市,都应该返回-1。如果n比较大,可以考虑使用状态压缩来优化空间复杂度。时间复杂度为O(n^2 * 2^n),空间复杂度为O(n * 2^n)。
相关问题

写一段c++代码解决这个问题,【问题描述】 给定n个城市(从0到n-1),3元组[A, B, C]表示城市A和城市B之间存在道路,且成本为C。计算从0号城市出发,旅行完每个城市一遍,最后回到0号城市的最小成本与路径。如果不存

在这样的路径,则返回-1。 以下是一份使用Dijkstra算法解决该问题的C++代码示例: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> #include <climits> using namespace std; const int MAXN = 105; const int INF = INT_MAX; struct Edge { int to, cost; Edge(int t, int c) : to(t), cost(c) {} }; vector<Edge> graph[MAXN]; int dist[MAXN][1 << 15]; priority_queue<pair<int, pair<int, int> >, vector<pair<int, pair<int, int> > >, greater<pair<int, pair<int, int> > > > pq; int tsp(int n) { memset(dist, 0x3f, sizeof(dist)); dist[0][1] = 0; pq.push(make_pair(0, make_pair(0, 1))); while (!pq.empty()) { auto cur = pq.top(); pq.pop(); int d = cur.first; int v = cur.second.first; int s = cur.second.second; if (dist[v][s] < d) { continue; } for (auto& e : graph[v]) { int nv = e.to; int ns = s | (1 << nv); if (dist[nv][ns] > dist[v][s] + e.cost) { dist[nv][ns] = dist[v][s] + e.cost; pq.push(make_pair(dist[nv][ns], make_pair(nv, ns))); } } } int ans = INF; for (int i = 1; i < n; i++) { ans = min(ans, dist[i][(1 << n) - 1] + graph[i][0].cost); } if (ans == INF) { return -1; } else { return ans; } } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { int a, b, c; cin >> a >> b >> c; graph[a].emplace_back(b, c); graph[b].emplace_back(a, c); } cout << tsp(n) << endl; return 0; } ``` 该代码使用了Dijkstra算法来计算从0号城市出发经过所有城市一遍后回到0号城市的最小成本。其中,dist[i][j]表示当前在第i个城市,已经经过的城市集合为j的情况下到达i城市的最小成本。在每一次迭代中,我们枚举当前所在城市v以及已经经过的城市集合s,然后尝试从v出发到达其他城市,并更新dist数组。最后,我们在所有已经经过所有城市集合的情况下,从每个城市i返回0号城市的成本中取一个最小值就是答案。 需要注意的一点是,我们将s表示为一个二进制数,其中第i位为1表示已经经过了第i个城市。这样可以方便地进行状态转移和更新。

c++实现【问题描述】 给定n个城市(从0到n-1),3元组[A, B, C]表示城市A和城市B之间存在道路,且成本为C。计算从0号城市出发,旅行完每个城市一遍,最后回到0号城市的最小成本与路径。如果不存在最优方案,输出-1. 【输入形式】 第一行有两个数n、m表示n个城市,m条边。 接下来的m行均为空格隔开的三个整数A B C,表示城市A和B之间的成本为C 【输出形式】 最小成本 最小成本对应的路径

以下是C++实现的代码,使用了TSP问题的动态规划解法: ```c++ #include <iostream> #include <vector> #include <cstring> using namespace std; const int N = 20, INF = 0x3f3f3f3f; int n, m, g[N][N], f[1 << N][N]; vector<int> path; int main() { cin >> n >> m; memset(g, 0x3f, sizeof g); for (int i = 0; i < m; i++) { int a, b, c; cin >> a >> b >> c; g[a][b] = g[b][a] = min(g[a][b], c); } memset(f, 0x3f, sizeof f); f[1][0] = 0; for (int i = 1; i < 1 << n; i += 2) { // 枚举子集,从0开始必须是奇数 for (int j = 0; j < n; j++) { if (i >> j & 1) { for (int k = 0; k < n; k++) { if (i - (1 << j) == 1 && k == 0) continue; // 特判只有0一个节点的情况 if (i >> k & 1) { f[i][j] = min(f[i][j], f[i - (1 << j)][k] + g[k][j]); } } } } } int res = INF, end = 0; for (int i = 1; i < n; i++) { // 枚举最后一个节点 if (f[(1 << n) - 1][i] == INF) continue; if (res > f[(1 << n) - 1][i] + g[i][0]) { res = f[(1 << n) - 1][i] + g[i][0]; end = i; } } if (res == INF) cout << -1 << endl; else { path.push_back(0); int state = (1 << n) - 1 - (1 << end); int u = end; while (state) { // 逆推路径 for (int i = 0; i < n; i++) { if (state >> i & 1 && f[state][u] == f[state - (1 << i)][i] + g[i][u]) { path.push_back(i); state -= 1 << i; u = i; break; } } } path.push_back(end); cout << res << endl; for (int i = path.size() - 1; i >= 0; i--) { cout << path[i] << " "; } } return 0; } ``` 该代码的时间复杂度为 $O(n^22^n)$,对于较小的数据集可以通过,但对于较大的数据集则无法承受。因此,需要使用其他算法来解决该问题,比如遗传算法、模拟退火等启发式算法或者使用最优化算法来解决。

相关推荐

最新推荐

recommend-type

236页PPT丨制药企业数字化转型项目顶层规划方案 .pptx

236页PPT丨制药企业数字化转型项目顶层规划方案 .pptx
recommend-type

054ssm-jsp-mysql旅游景点线路网站.zip(可运行源码+数据库文件+文档)

本系统采用了jsp技术,将所有业务模块采用以浏览器交互的模式,选择MySQL作为系统的数据库,开发工具选择eclipse来进行系统的设计。基本实现了旅游网站应有的主要功能模块,本系统有管理员、和会员,管理员权限如下:个人中心、会员管理、景点分类管理、旅游景点管理、旅游线路管理、系统管理;会员权限如下:个人中心、旅游景点管理、旅游线路管理、我的收藏管理等操作。 对系统进行测试后,改善了程序逻辑和代码。同时确保系统中所有的程序都能正常运行,所有的功能都能操作,并且该系统有很好的操作体验,实现了对于景点和会员双赢。 关键词:旅游网站;jsp;Mysql;
recommend-type

09 厅门安装质量管理.doc

09 厅门安装质量管理.doc
recommend-type

WPF两个窗口实时传参数,并自动显示

WPF两个窗口实时传参数,并自动显示 简单易懂,适合在此基础上拓展!! 实操,可直接使用。
recommend-type

无线收发系统的设计与实现.doc

无线收发系统的设计与实现.doc
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。