用模糊控制boston housing数据集进行回归(Python语言来编写程序)
时间: 2024-01-05 13:03:03 浏览: 134
R语言实例基于Boston数据集的数据分析报告用logistic回归LDA线性
好的,我来回答您的问题。
首先,您需要安装模糊控制库 `scikit-fuzzy`,可以使用以下命令进行安装:
```
pip install -U scikit-fuzzy
```
接下来,您需要准备Boston Housing数据集。可以使用以下代码进行下载和加载:
```python
from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data
y = boston.target
```
接着,您需要对数据进行归一化处理,可以使用 `MinMaxScaler` 进行处理:
```python
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
```
然后,您需要定义模糊控制系统的输入和输出变量。我们假设有三个输入变量:房间数、税收和犯罪率,一个输出变量:房价。可以使用以下代码进行定义:
```python
import numpy as np
import skfuzzy as fuzz
# Define input variables
rooms = np.arange(1, 11, 1)
tax = np.arange(0, 1.1, 0.1)
crime = np.arange(0, 1.1, 0.1)
# Define output variable
price = np.arange(0, 51, 1)
```
接着,您需要定义每个变量的隶属度函数。可以使用以下代码进行定义:
```python
# Define membership functions for each variable
rooms_low = fuzz.trimf(rooms, [1, 1, 5])
rooms_med = fuzz.trimf(rooms, [1, 5, 10])
rooms_high = fuzz.trimf(rooms, [5, 10, 10])
tax_low = fuzz.trimf(tax, [0, 0, 0.5])
tax_med = fuzz.trimf(tax, [0, 0.5, 1])
tax_high = fuzz.trimf(tax, [0.5, 1, 1])
crime_low = fuzz.trimf(crime, [0, 0, 0.5])
crime_med = fuzz.trimf(crime, [0, 0.5, 1])
crime_high = fuzz.trimf(crime, [0.5, 1, 1])
price_low = fuzz.trimf(price, [0, 0, 25])
price_med = fuzz.trimf(price, [0, 25, 50])
price_high = fuzz.trimf(price, [25, 50, 50])
```
然后,您需要定义规则库,将输入变量映射到输出变量。可以使用以下代码进行定义:
```python
# Define rules
rule1 = np.fmax(rooms_low, np.fmax(tax_low, crime_low))
rule2 = np.fmax(rooms_med, np.fmax(tax_med, crime_med))
rule3 = np.fmax(rooms_high, np.fmax(tax_high, crime_high))
# Define output membership functions for each rule
out_low = np.fmin(rule1, price_low)
out_med = np.fmin(rule2, price_med)
out_high = np.fmin(rule3, price_high)
# Aggregate all output membership functions
aggregated = np.fmax(out_low, np.fmax(out_med, out_high))
# Calculate defuzzified output value
result = fuzz.defuzz(price, aggregated, 'centroid')
```
最后,您可以将以上代码整合为一个函数,并使用交叉验证等技术对模型进行评估。完整代码如下:
```python
import numpy as np
import skfuzzy as fuzz
from sklearn.datasets import load_boston
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score
def fuzzy_regression(X, y):
# Define input variables
rooms = np.arange(1, 11, 1)
tax = np.arange(0, 1.1, 0.1)
crime = np.arange(0, 1.1, 0.1)
# Define output variable
price = np.arange(0, 51, 1)
# Define membership functions for each variable
rooms_low = fuzz.trimf(rooms, [1, 1, 5])
rooms_med = fuzz.trimf(rooms, [1, 5, 10])
rooms_high = fuzz.trimf(rooms, [5, 10, 10])
tax_low = fuzz.trimf(tax, [0, 0, 0.5])
tax_med = fuzz.trimf(tax, [0, 0.5, 1])
tax_high = fuzz.trimf(tax, [0.5, 1, 1])
crime_low = fuzz.trimf(crime, [0, 0, 0.5])
crime_med = fuzz.trimf(crime, [0, 0.5, 1])
crime_high = fuzz.trimf(crime, [0.5, 1, 1])
price_low = fuzz.trimf(price, [0, 0, 25])
price_med = fuzz.trimf(price, [0, 25, 50])
price_high = fuzz.trimf(price, [25, 50, 50])
# Define rules
rule1 = np.fmax(rooms_low, np.fmax(tax_low, crime_low))
rule2 = np.fmax(rooms_med, np.fmax(tax_med, crime_med))
rule3 = np.fmax(rooms_high, np.fmax(tax_high, crime_high))
# Define output membership functions for each rule
out_low = np.fmin(rule1, price_low)
out_med = np.fmin(rule2, price_med)
out_high = np.fmin(rule3, price_high)
# Aggregate all output membership functions
aggregated = np.fmax(out_low, np.fmax(out_med, out_high))
# Calculate defuzzified output value
result = fuzz.defuzz(price, aggregated, 'centroid')
return result
# Load Boston Housing dataset
boston = load_boston()
X = boston.data
y = boston.target
# Normalize input data
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
# Evaluate model using cross-validation
scores = cross_val_score(fuzzy_regression, X, y, cv=10)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
```
希望这个回答对您有帮助!
阅读全文