可视化界面is_inside = cv2.pointPolygonTest(pts, center_xy, False) >= 0
时间: 2023-06-10 08:07:22 浏览: 134
这段代码使用了OpenCV库中的pointPolygonTest函数,用于判断一个点是否在一个多边形内部。其中,pts表示多边形的顶点坐标,center_xy表示待判断的点的坐标,False表示不需要考虑多边形的旋转角度。函数返回值大于等于0表示待判断的点在多边形内部,小于0表示在多边形外部,等于0表示在多边形边界上。这个函数在可视化界面中可能用于判断鼠标点击事件是否在某个区域内部。
相关问题
解释一下这段代码import cv2 import numpy as np cap = cv2.VideoCapture(0) # 初始化 ROI ret, frame = cap.read() roi = cv2.selectROI(frame, False) # 初始化 CamShift hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)), np.array((180., 255., 255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) # 开始跟踪 term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) while True: ret, frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1) ret, track_window = cv2.CamShift(dst, track_window, term_crit) pts = cv2.boxPoints(ret) pts = np.int0(pts) img = cv2.polylines(frame, [pts], True, 255, 2) cv2.imshow('CamShift', img) k = cv2.waitKey(60) & 0xff if k == 27: break else: break cv2.destroyAllWindows() cap.release()
这段代码实现了使用CamShift算法进行目标跟踪的功能。具体流程如下:
1. 导入所需的库:`cv2`用于图像处理,`numpy`用于数组操作。
2. 创建视频捕获对象:`cv2.VideoCapture(0)`表示从摄像头获取视频。
3. 初始化ROI(感兴趣区域):通过调用`cv2.selectROI`函数,可以在视频帧中手动选择一个感兴趣的区域。
4. 初始化CamShift:将ROI转换为HSV颜色空间,并创建一个掩码,将非ROI区域设为0。然后使用`cv2.calcHist`计算ROI的直方图,并进行归一化处理。
5. 开始跟踪:循环读取每一帧图像,将图像转换为HSV颜色空间,并使用`cv2.calcBackProject`函数根据ROI的直方图创建反向投影图像。然后利用`cv2.CamShift`函数进行目标跟踪,返回目标位置和大小。接下来,根据目标位置绘制一个旋转矩形,并显示在图像上。最后,按下ESC键退出循环。
6. 释放资源:关闭所有显示的窗口,并释放视频捕获对象。
这段代码的主要功能是实时跟踪摄像头中选择的感兴趣区域。
这段代码是啥意思:list_pts_blue = [[0, h / 2], [0, h / 2 + 20], [w, h / 2 + 20], [w, h / 2]] ndarray_pts_blue = np.array(list_pts_blue, np.int32) polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1) polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis] # 填充第二个撞线polygon(黄色) mask_image_temp = np.zeros((height, width), dtype=np.uint8) list_pts_yellow = [[0, h / 2 + 70], [0, h / 2 + 90], [w, h / 2 + 90], [w, h / 2 + 70]] ndarray_pts_yellow = np.array(list_pts_yellow, np.int32) polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2) polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis]
这段代码是使用 OpenCV 库对图像进行多边形填充的操作。首先,创建一个空的掩膜图像 `mask_image_temp`,大小为 `(height, width)`,数据类型为 `np.uint8`。然后,定义了两个多边形的顶点坐标列表 `list_pts_blue` 和 `list_pts_yellow`。
对于第一个多边形(蓝色),将顶点坐标列表转换为 NumPy 数组 `ndarray_pts_blue`,数据类型为 `np.int32`。然后使用 `cv2.fillPoly()` 函数将这个多边形填充到 `mask_image_temp` 中,颜色值为 1。最后,将填充后的结果 `polygon_blue_value_1` 添加一个额外的维度,变成三维数组。
对于第二个多边形(黄色),类似地,将顶点坐标列表转换为 NumPy 数组 `ndarray_pts_yellow`,数据类型为 `np.int32`。然后使用 `cv2.fillPoly()` 函数将这个多边形填充到另一个新的 `mask_image_temp` 中,颜色值为 2。同样,将填充后的结果 `polygon_yellow_value_2` 添加一个额外的维度,变成三维数组。
这段代码的作用是创建两个特定形状的多边形掩膜,并将其用不同的颜色值填充到相应的掩膜图像中。这样可以在后续的图像处理中使用这些掩膜来提取或操作特定区域的图像。
阅读全文