pts_4d = torch.cat([points, points.new_ones(size=(num_points, 1))], dim=-1) pts_2d = pts_4d @ lidar2img_rt[view_idx].t() # pts_2d = pts_4d @ lidar2img_rt.t() pts_2d[:, 2] = torch.clamp(pts_2d[:, 2], min=1e-5) pts_2d[:, 0] /= pts_2d[:, 2] pts_2d[:, 1] /= pts_2d[:, 2] # img transformation: scale -> crop -> flip # the image is resized by img_scale_factor img_coors = pts_2d[:, 0:2] * img_scale_factor img_coors -= img_crop_offset

时间: 2023-06-27 17:06:39 浏览: 68
这段代码的作用是将点云数据从激光雷达坐标系转换到图像坐标系。具体来说,首先将点云坐标加上一个齐次坐标1,变成4维坐标。然后通过lidar2img_rt矩阵将点云坐标变换到图像坐标系下。接着将变换后的坐标系中的z轴坐标值进行限制,避免其小于1e-5。最后将x、y坐标值除以z坐标值,得到在图像中的坐标值。最后,将图像坐标系中的坐标进行缩放和平移,并进行图像的翻转操作。
相关问题

pts_4d = torch.cat([points, points.new_ones(size=(num_points, 1))], dim=-1) pts_2d = pts_4d @ lidar2img_rt[view_idx].t() # pts_2d = pts_4d @ lidar2img_rt.t() pts_2d[:, 2] = torch.clamp(pts_2d[:, 2], min=1e-5) pts_2d[:, 0] /= pts_2d[:, 2] pts_2d[:, 1] /= pts_2d[:, 2]

这段代码是将点云数据从激光雷达坐标系转换到图像坐标系。首先,将点云数据的每个点的坐标添加一维1,变成4D张量。然后,将4D张量与激光雷达到图像的变换矩阵相乘,得到对应的2D点的坐标。这里注意到深度值可能为0或负数,因此使用 `clamp` 函数将深度值限制在一个较小的正数范围内。最后,将2D坐标的x、y坐标分别除以深度值,得到在图像上的真实位置。

这段代码是啥意思:list_pts_blue = [[0, h / 2], [0, h / 2 + 20], [w, h / 2 + 20], [w, h / 2]] ndarray_pts_blue = np.array(list_pts_blue, np.int32) polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1) polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis] # 填充第二个撞线polygon(黄色) mask_image_temp = np.zeros((height, width), dtype=np.uint8) list_pts_yellow = [[0, h / 2 + 70], [0, h / 2 + 90], [w, h / 2 + 90], [w, h / 2 + 70]] ndarray_pts_yellow = np.array(list_pts_yellow, np.int32) polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2) polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis]

这段代码是使用 OpenCV 库对图像进行多边形填充的操作。首先,创建一个空的掩膜图像 `mask_image_temp`,大小为 `(height, width)`,数据类型为 `np.uint8`。然后,定义了两个多边形的顶点坐标列表 `list_pts_blue` 和 `list_pts_yellow`。 对于第一个多边形(蓝色),将顶点坐标列表转换为 NumPy 数组 `ndarray_pts_blue`,数据类型为 `np.int32`。然后使用 `cv2.fillPoly()` 函数将这个多边形填充到 `mask_image_temp` 中,颜色值为 1。最后,将填充后的结果 `polygon_blue_value_1` 添加一个额外的维度,变成三维数组。 对于第二个多边形(黄色),类似地,将顶点坐标列表转换为 NumPy 数组 `ndarray_pts_yellow`,数据类型为 `np.int32`。然后使用 `cv2.fillPoly()` 函数将这个多边形填充到另一个新的 `mask_image_temp` 中,颜色值为 2。同样,将填充后的结果 `polygon_yellow_value_2` 添加一个额外的维度,变成三维数组。 这段代码的作用是创建两个特定形状的多边形掩膜,并将其用不同的颜色值填充到相应的掩膜图像中。这样可以在后续的图像处理中使用这些掩膜来提取或操作特定区域的图像。

相关推荐

for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]在forward函数中,如果我要使用channel_out变量传入SA_modules中,我该如何在forward函数中计算并得到它,再传入SA_modules中,你可以给我详细的代码吗?

将下列生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构:class Generator(nn.Module): def init(self): super(Generator, self).init() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 另外修复部分代码定义为if __name__ == '__main__': root = tk.Tk() root.withdraw() f_path = filedialog.askopenfilename() img = cv.imread(f_path) pre_pts = -1, -1 cv.namedWindow('picture', cv.WINDOW_NORMAL) cv.resizeWindow('picture', 256, 256) cv.moveWindow('picture', 600, 300) cv.imshow('picture', img) cv.setMouseCallback('picture', draw) cv.waitKey(0) cv.destroyAllWindows() mask = cv.inRange(img, (0, 0, 0), (1, 1, 1)) image_tensor = transforms.ToTensor()(img) mask_tensor = transforms.ToTensor()(mask) image_tensor = image_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0) generator = Generator() load_edgeconnect_weights(generator, 'E:/fin/models/gen.pth') image_tensor = image_tensor.cuda() mask_tensor = mask_tensor.cuda() generator = generator.cuda() with torch.no_grad(): output_tensor = generator(image_tensor, mask_tensor)

这段代码是什么意思 def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))

最新推荐

recommend-type

整站程序打听网(wordpress打造cms)-wordpress-cms.rar

计算机系毕业设计、php源码[整站程序]打听网(wordpress打造cms)_wordpress_cms
recommend-type

毕业设计&课设-Matlab中卡尔曼滤波器在电池充电状态估计中的应用.zip

该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

儿童节六一送祝福的网页源代码项目.zip

儿童节六一送祝福的网页源代码项目.zip 儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.zip儿童节六一送祝福的网页源代码项目.
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码是用于生成 a 和 b 之间的随机数。首先,它使用 rand() 函数生成一个 [0,1) 之间的随机小数,然后将这个小数乘以 a、b 范围内的差值,再加上 a 和 b 中的较小值。这可以确保生成的随机数大于等于 a,小于等于 b,而且不会因为 a 和 b 之间的差距过大而导致难以生成足够多的随机数。最后,使用 fabs() 函数来确保计算结果是正数。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、