pruning_filters源码pytorch版本源码
时间: 2024-05-01 18:20:43 浏览: 92
以下是PyTorch版本的`pruning_filters`源码:
```python
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
class PrunedConv2d(nn.Module):
def __init__(self, conv):
super(PrunedConv2d, self).__init__()
self.conv = conv
def forward(self, x):
return self.conv(x)
def pruning_filters(model, layer_name, amount):
"""
对指定层进行卷积核剪枝
:param model: 待剪枝的模型
:param layer_name: 指定层的名称
:param amount: 剪枝比例,即需要删除的卷积核所占的比例
:return:
"""
layer = dict(model.named_modules())[layer_name]
if isinstance(layer, PrunedConv2d):
layer = layer.conv
if not isinstance(layer, nn.Conv2d):
raise TypeError("Only 'nn.Conv2d' layer type can be pruned")
# 获取卷积核数量
num_filters = layer.weight.shape[0]
# 计算需要删除的卷积核数量
num_pruned_filters = int(num_filters * amount)
# 构建剪枝对象
prune_params = (
prune.get_parameter(module=layer, name="weight"),
prune.L1Unstructured,
prune.Criterion.L1,
(num_pruned_filters,)
)
# 执行剪枝操作
prune.remove(*prune_params)
# 创建新的PrunedConv2d层替换原有的层
new_layer = PrunedConv2d(layer)
setattr(model, layer_name, new_layer)
```
此代码中定义了一个`PrunedConv2d`类,用于将剪枝后的卷积层替换原有的卷积层。`pruning_filters`函数接收一个待剪枝的模型、需要剪枝的层的名称以及剪枝比例,然后使用PyTorch内置的剪枝函数`prune.remove`对指定层进行卷积核剪枝,并使用`PrunedConv2d`类创建一个新的剪枝后的卷积层替换原有的层。