mask = torch.ones([self.out_channels,]) num_channel_pruned = int(self.out_channels * pruning_rate) scores = self.weight.abs().sum(dim=(1, 2, 3)) _, index_channel_pruned = torch.topk(scores, num_channel_pruned, largest=False)
时间: 2024-04-07 15:31:56 浏览: 82
这段代码看起来是在进行卷积层的通道剪枝,首先创建一个与输出通道数相同的全 1 张量作为掩码,然后计算每个通道的权重绝对值之和,选取绝对值之和较小的前 num_channel_pruned 个通道进行剪枝,剪枝后将对应的掩码值设为 0。这样,在后续的前向传播过程中,被剪枝的通道对应的权重将被清零,从而达到减小模型参数量的目的。
相关问题
把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
这段代码哪里错了 class my_BiGRU(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout): super(my_BiGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.gru_dropout = gru_dropout self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True) self.fc = torch.nn.Linear(hidden_size * 2, output_size) def _setup_BiGRU_layers(self): self.BiGRU_layers = my_BiGRU(input_size=self.args.capsule_out_dim, output_size=self.args.apsule_out_features, hidden_size=self.args.BiGRU_hiddensize, num_layers=self.args.BiGRU_layers, gru_dropout=self.args.BiGRU_dropout, )
这段代码存在两个问题:
1.函数 `_setup_BiGRU_layers` 中的代码应该是在类的构造函数 `__init__` 中进行初始化,而不是在另外一个函数中进行初始化。
2.在调用 `my_BiGRU` 类时,参数名称有误,应该将 `apsule_out_features` 改为 `capsule_out_features`。
改正后的代码如下所示:
```
class my_BiGRU(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout, capsule_out_features):
super(my_BiGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.gru_dropout = gru_dropout
self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True)
self.fc = torch.nn.Linear(hidden_size * 2, output_size)
self.BiGRU_layers = my_BiGRU(input_size=self.input_size,
output_size=capsule_out_features,
hidden_size=self.hidden_size,
num_layers=self.num_layers,
gru_dropout=self.gru_dropout,
)
```
注意:这里假设 `capsule_out_dim` 和 `args` 都已经在代码中被定义好了。