size为(256,32,36,256)的tensor,输入卷积层nn.Conv2d(32,64,(3,3),stride=(2,2),padding=(1,1)),,输出的size是什么?
时间: 2023-10-20 20:08:15 浏览: 228
根据卷积层的计算公式,输出的尺寸计算公式为:
输出尺寸 = ((输入尺寸 - 卷积核尺寸 + 2 * 填充) / 步长) + 1
其中,输入尺寸为(256,32,36,256),卷积核尺寸为(3,3),步长为(2,2),填充为(1,1)。
经过计算,可以得到输出的尺寸为(256,64,18,128)。即通道数变为64,高度和宽度分别减半。
相关问题
size为(256,32,36,256)的tensor,输入卷积层nn.Conv2d(32,64,(3,3),stride=(2,2),padding=(1,1)),输出的size是什么?
根据卷积层的计算公式,输出的size应该是(256, 64, 18, 128)。其中,256表示batch size,64表示输出通道数,18表示输出特征图的高度,128表示输出特征图的宽度。计算方法如下:
- 高度维度:(32 + 2x1 - 3) / 2 + 1 = 18
- 宽度维度:(36 + 2x1 - 3) / 2 + 1 = 128
因此,输出的size为(256, 64, 18, 128)。
size为(256,64,18,128)的tensor,输入卷积层 nn.Conv2d(64,128,(3,6),stride=(3,3)),输出的size是什么?
输入张量大小为 (batch_size, channels, height, width) = (256, 64, 18, 128),卷积核大小为 (kernel_size, kernel_size) = (3, 6),步长为 (stride_height, stride_width) = (3, 3)。
使用卷积层进行卷积操作时,输出张量的大小可以通过以下公式计算:
output_height = (input_height - kernel_height) / stride_height + 1
output_width = (input_width - kernel_width) / stride_width + 1
根据上述公式,可以计算出本题的输出张量大小为:
output_height = (18 - 3) / 3 + 1 = 6
output_width = (128 - 6) / 3 + 1 = 41
因此,输出的张量大小为 (256, 128, 6, 41)。
阅读全文
相关推荐
















