x_adv = np.load('data\experiment_data\mnist\local\x_train_adv_PGD.npy')
时间: 2023-05-21 10:05:13 浏览: 161
这是一个关于 numpy 的 load 函数的调用,它从 'data\experiment_data\mnist\local\x_train_adv_PGD.npy' 文件中加载 numpy 数组并将其存储到变量 x_adv 中。这种技术通常用于读取和处理数据集或模型参数。
相关问题
优化这段代码:import tensorflow as tf import numpy as np # 加载数据集 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # 定义模型 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=5) # 生成对抗样本 epsilon = 0.1 x_adv = tf.Variable(x_test[:1000], dtype=tf.float32) y_true = tf.Variable(y_test[:1000], dtype=tf.int64) with tf.GradientTape() as tape: tape.watch(x_adv) y_pred = model(x_adv) loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred) grad = tape.gradient(loss, x_adv) normed_grad = tf.sign(grad) x_adv = x_adv + epsilon * normed_grad # 评估模型在对抗样本上的性能 model.evaluate(x_adv, y_true)
下面是优化后的代码:
```python
import tensorflow as tf
import numpy as np
# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 定义模型
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=5)
# 生成对抗样本
epsilon = 0.1
x_adv = x_test[:1000]
y_true = y_test[:1000]
# 使用tf.GradientTape计算梯度
def get_grads(model, x, y):
with tf.GradientTape() as tape:
tape.watch(x)
y_pred = model(x)
loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred)
return tape.gradient(loss, x)
# 对抗样本生成函数
def generate_adv_example(model, x, y, epsilon):
grad = tf.sign(get_grads(model, x, y))
return x + epsilon * grad
x_adv = generate_adv_example(model, x_adv, y_true, epsilon)
# 评估模型在对抗样本上的性能
model.evaluate(x_adv, y_true)
```
优化后的代码主要做了以下几个方面的改进:
1. 对抗样本生成过程封装成了函数 `generate_adv_example()`,提高了代码的复用性。
2. 使用了 `get_grads()` 函数来计算梯度,避免了重复计算梯度的问题。
3. 去掉了 `tf.Variable` 的使用,避免了不必要的内存开销。
4. 代码风格更加规范,易于阅读。
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np data_wait = pd.read_csv("2020年洋葱价格数据集.csv") UP_dataframes = data_wait[(data_wait["state"] == "Uttar Pradesh")] list_state = data_wait["state"].unique() max_adv = dict() min_adv = dict() for i in list_state: min_adv[i] = data_wait[(data_wait["state"] == i)]["min_price"].mean() max_adv[i] = data_wait[(data_wait["state"] == i)]["max_price"].mean() tabel_min = pd.DataFrame.from_dict(min_adv, orient="index") tabel_max = pd.DataFrame.from_dict(max_adv, orient="index") print(tabel_max,tabel_min) plt.hist(height=tabel_max[0], x=tabel_max.index) plt.show() plt.hist(height=tabel_min[0],x=tabel_min.index) plt.show()这个代码有甚恶问题
这段代码有一些错误和不规范之处,具体如下:
1. 在导入库的时候,应该将其放在文件的最上面,而不是中间。
2. 在导入库的时候,应该使用规范的缩写,例如将 `matplotlib.pyplot` 缩写为 `plt`。
3. 在 `pd.read_csv` 中应该传入文件路径,而不是文件名称。
4. 在 `for` 循环中,应该使用 `UP_dataframes` 而不是 `data_wait`。
5. 在 `min_adv` 和 `max_adv` 的字典中,应该将其初始化为空字典。
6. 在 `pd.DataFrame.from_dict` 中,应该将 `orient` 参数设置为 `"columns"`,而不是 `"index"`。
7. 在 `plt.hist` 中,使用了 `height` 参数,而正确的参数是 `x`。
下面是修改后的代码:
```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
data_wait = pd.read_csv("2020年洋葱价格数据集.csv")
UP_dataframes = data_wait[(data_wait["state"] == "Uttar Pradesh")]
list_state = data_wait["state"].unique()
max_adv = {}
min_adv = {}
for i in list_state:
min_adv[i] = UP_dataframes[UP_dataframes["state"] == i]["min_price"].mean()
max_adv[i] = UP_dataframes[UP_dataframes["state"] == i]["max_price"].mean()
tabel_min = pd.DataFrame.from_dict(min_adv, orient="columns")
tabel_max = pd.DataFrame.from_dict(max_adv, orient="columns")
print(tabel_max, tabel_min)
plt.hist(x=tabel_max.index, weights=tabel_max[0])
plt.show()
plt.hist(x=tabel_min.index, weights=tabel_min[0])
plt.show()
```
阅读全文