def get_adv_loss(device, eps, layer_idx, net, bounds, inputs, targets, n_steps, step_size, detach=True, loss_fn=F.cross_entropy, avg=True, is_train=False): #layer_idx: curr_layer adv_latent = attack_layer(device, eps, layer_idx, net, bounds, inputs, targets, n_steps, step_size, detach, loss_fn) if detach: adv_latent = adv_latent.clone().detach() net.zero_grad() if is_train: net.train() adv_outs = net.forward_from(layer_idx, adv_latent) adv_loss = loss_fn(adv_outs, targets) adv_ok = targets.eq(adv_outs.max(dim=1)[1]).float() if avg: adv_ok = adv_ok.mean() # for motivation adv_num = 1-targets.eq(adv_outs.max(dim=1)[1]).float() return adv_loss, adv_ok, adv_num 这段代码的意思
时间: 2023-06-08 08:03:51 浏览: 235
该函数的作用是获取对抗损失,其中:
- device:设备选择;
- eps:最大扰动;
- layer_idx:选择网络的哪一层;
- net:神经网络模型;
- bounds:输入数据的上下限;
- inputs:输入数据;
- targets:标签数据;
- n_steps:梯度迭代次数;
- step_size:每一步的梯度步长;
- detach:是否需要从计算图中分离;
- loss_fn:损失函数;
- avg:是否需要计算平均损失;
- is_train:是否为训练状态。
相关问题
def adversarial(x, model, loss_func, c=1e-4, kappa=0, num_iter=100, lr=0.01): """ Create adversarial examples using CW algorithm Args: - x: input image - model: the neural network model - loss_func: the loss function to use - c: the weight for the L2 regularization term (default=1e-4) - kappa: the confidence parameter (default=0) - num_iter: number of iterations for the algorithm (default=100) - lr: learning rate for the optimization (default=0.01) Returns: - x_adv: adversarial example """ x_adv = x.clone().detach().requires_grad_(True) for i in range(num_iter): output = model(x_adv) loss = loss_func(output, torch.tensor([kappa]), x, x_adv, c) model.zero_grad() loss.backward() with torch.no_grad(): x_adv += lr * x_adv.grad x_adv = torch.max(torch.min(x_adv, x + 0.35), x - 0.35) x_adv = torch.clamp(x_adv, 0, 1) x_adv.requires_grad_() return x_adv.detach()上述代码出现TypeError: ce_loss() takes 2 positional arguments but 5 were given错误,请改正
根据代码,`loss_func`应该是一个函数,且它的输入参数应该是模型的输出 `output`和目标标签 `target`。因此,需要修改 `loss_func` 函数的输入参数,将 `x`、`x_adv` 和 `c` 作为函数的参数,而不是在函数调用时传入。修改后的代码如下:
```
def adversarial(x, model, loss_func, c=1e-4, kappa=0, num_iter=100, lr=0.01):
"""Create adversarial examples using CW algorithm
Args:
- x: input image
- model: the neural network model
- loss_func: the loss function to use
- c: the weight for the L2 regularization term (default=1e-4)
- kappa: the confidence parameter (default=0)
- num_iter: number of iterations for the algorithm (default=100)
- lr: learning rate for the optimization (default=0.01)
Returns:
- x_adv: adversarial example
"""
x_adv = x.clone().detach().requires_grad_(True)
for i in range(num_iter):
output = model(x_adv)
loss = loss_func(output, kappa, target=x, adversary=x_adv, c=c)
model.zero_grad()
loss.backward()
with torch.no_grad():
x_adv += lr * x_adv.grad
x_adv = torch.max(torch.min(x_adv, x + 0.35), x - 0.35)
x_adv = torch.clamp(x_adv, 0, 1)
x_adv.requires_grad_()
return x_adv.detach()
```
翻译 test_adv_loss, test_adv_acc = model.evaluate(test_adv, test_labels[:1000])
test_adv_loss,test_adv_acc = model.evaluate(test_adv,test_labels[:1000]) 的翻译为:对于测试数据集test_adv和前1000个测试标签,模型进行评估,得到的损失值为test_adv_loss,准确率为test_adv_acc。
阅读全文