class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1)什么意思
时间: 2023-06-06 16:07:16 浏览: 191
这段代码是一个 PyTorch 的模块,其中的 forward 函数实现了对输入数据的展平操作,也就是将输入张量 x 的所有维度除了第 0 维外的所有元素展开成一维,第 0 维元素个数保持不变。具体实现是使用了 PyTorch 的 view 函数,将 x 的形状由 (batch_size, ...) 转换成了 (batch_size, -1),其中 -1 表示该维度的 size 可以通过其他维度推断出来。这个模块一般用于卷积神经网络中的全连接层前,将二维卷积输出的特征图展平成一维向量,以便被全连接层处理。
相关问题
解释一下这个代码:class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0),-1)
这段代码定义了一个名为Flatten的类,它是nn.Module的子类,即一个PyTorch模型的基本组成部分。该类的作用是将输入张量展平成一维,以便于传递给后续的全连接层等模块。
具体实现是在forward函数中,输入参数input是一个张量,通过张量的view方法将其变形成一个新的张量,第一个维度不变,第二个维度变为-1,表示将第二个维度变成需要的大小,由系统自动推断。返回的张量就是展平后的结果。
例如,如果输入张量的形状为[batch_size, channel, height, width],那么经过Flatten操作后,输出张量的形状变为[batch_size, channel*height*width]。
更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def init(self): super().init() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def init(self, channel, k_size=3): super(ECA_Module, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def init(self): super().init() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x,使最后输出为[16,1,50,50,]。
更改后的代码如下:
```
import torch
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
class eca_Resnet50(nn.Module):
def __init__(self):
super().__init__()
self.model = models.resnet50(pretrained=True)
self.model.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.model.fc = nn.Linear(2048, 1000)
self.eca = ECA_Module(2048, 8)
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.eca(x)
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
x = self.model.fc(x)
return x
class ECA_Module(nn.Module):
def __init__(self, channel, k_size=3):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x)
y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)
y = self.sigmoid(y)
return x * y.expand_as(x)
class ImageDenoising(nn.Module):
def __init__(self):
super().__init__()
self.model = eca_Resnet50()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(64, 1, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = self.conv3(x)
x = F.relu(x)
x = x.view(-1, 1, 50, 50)
return x
```
在修改的过程中,主要是将最后一层卷积层的输出通道数改为 1,并在 forward 方法中添加了 x.view(-1, 1, 50, 50),将输出的大小修改为 [16,1,50,50]。
阅读全文