pso-bp多分类python
时间: 2023-07-24 11:17:22 浏览: 41
PSO-BP 是一种结合了粒子群优化算法和 BP 算法的神经网络模型,可以用于多分类问题。在 Python 中实现 PSO-BP 多分类模型,可以参考以下步骤:
1. 导入必要的库:
```
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
```
2. 载入数据集:
```
iris = load_iris()
X = iris['data']
y = iris['target']
```
3. 划分训练集和测试集:
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```
4. 定义神经网络模型:
```
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W1 = np.random.randn(self.input_dim, self.hidden_dim)
self.b1 = np.zeros((1, self.hidden_dim))
self.W2 = np.random.randn(self.hidden_dim, self.output_dim)
self.b2 = np.zeros((1, self.output_dim))
def forward(self, X):
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = np.tanh(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
exp_scores = np.exp(self.z2)
self.probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return self.probs
def predict(self, X):
return np.argmax(self.forward(X), axis=1)
```
5. 定义 PSO-BP 算法:
```
class PSO_BP:
def __init__(self, n_particles, max_iter, learning_rate, input_dim, hidden_dim, output_dim):
self.n_particles = n_particles
self.max_iter = max_iter
self.learning_rate = learning_rate
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.neural_networks = [NeuralNetwork(self.input_dim, self.hidden_dim, self.output_dim) for i in range(self.n_particles)]
self.global_best_loss = float('inf')
self.global_best_weights = None
self.global_best_bias = None
self.particle_best_loss = [float('inf') for i in range(self.n_particles)]
self.particle_best_weights = [self.neural_networks[i].W1 for i in range(self.n_particles)]
self.particle_best_bias = [self.neural_networks[i].b1 for i in range(self.n_particles)]
self.velocities = [(np.random.randn(self.input_dim, self.hidden_dim), np.random.randn(1, self.hidden_dim), np.random.randn(self.hidden_dim, self.output_dim), np.random.randn(1, self.output_dim)) for i in range(self.n_particles)]
def fitness(self, X, y, weights, bias):
nn = NeuralNetwork(self.input_dim, self.hidden_dim, self.output_dim)
nn.W1 = weights[0]
nn.b1 = bias[0]
nn.W2 = weights[1]
nn.b2 = bias[1]
probs = nn.forward(X)
log_likelihood = -np.log(probs[range(len(y)), y])
loss = np.sum(log_likelihood) / len(y)
return loss
def train(self, X_train, y_train):
for i in range(self.max_iter):
for j in range(self.n_particles):
nn = self.neural_networks[j]
weights = (nn.W1, nn.W2)
bias = (nn.b1, nn.b2)
loss = self.fitness(X_train, y_train, weights, bias)
if loss < self.particle_best_loss[j]:
self.particle_best_loss[j] = loss
self.particle_best_weights[j] = nn.W1
self.particle_best_bias[j] = nn.b1
if loss < self.global_best_loss:
self.global_best_loss = loss
self.global_best_weights = nn.W1
self.global_best_bias = nn.b1
v_weights = self.velocities[j][0]
v_bias = self.velocities[j][1]
r1 = np.random.rand(self.input_dim, self.hidden_dim)
r2 = np.random.rand(1, self.hidden_dim)
r3 = np.random.rand(self.hidden_dim, self.output_dim)
r4 = np.random.rand(1, self.output_dim)
v_weights = self.learning_rate * (v_weights + r1 * (self.particle_best_weights[j] - nn.W1) + r2 * (self.global_best_weights - nn.W1))
v_bias = self.learning_rate * (v_bias + r3 * (self.particle_best_bias[j] - nn.b1) + r4 * (self.global_best_bias - nn.b1))
nn.W1 = nn.W1 + v_weights
nn.b1 = nn.b1 + v_bias
def predict(self, X_test):
nn = NeuralNetwork(self.input_dim, self.hidden_dim, self.output_dim)
nn.W1 = self.global_best_weights
nn.b1 = self.global_best_bias
return nn.predict(X_test)
```
6. 训练模型并预测:
```
pso_bp = PSO_BP(n_particles=10, max_iter=100, learning_rate=0.01, input_dim=X_train.shape[1], hidden_dim=10, output_dim=len(np.unique(y_train)))
pso_bp.train(X_train, y_train)
y_pred = pso_bp.predict(X_test)
```
这样,就可以使用 PSO-BP 算法实现多分类模型了。需要注意的是,这里的代码仅供参考,具体的实现方式可能因具体问题而异。
阅读全文