已知5个矩阵并可连乘,编写程序输出矩阵连乘的最优计算次序
时间: 2023-05-18 07:06:19 浏览: 136
可以使用动态规划来解决这个问题。具体来说,可以定义一个二维数组dp,其中dp[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序所需的最小乘法次数。初始时,将dp[i][i]设为0,表示单个矩阵不需要乘法次数。然后,可以使用以下递推式来计算dp数组的值:
dp[i][j] = min(dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j])
其中,p是一个数组,表示每个矩阵的行数和列数,p[i-1]表示第i个矩阵的行数,p[i]表示第i个矩阵的列数。k的取值范围是[i,j-1],表示将第i个矩阵到第j个矩阵划分成两部分,分别计算它们的最优计算次序,然后将它们合并起来的乘法次数。最终,dp[1][n]就是整个矩阵连乘的最优计算次序所需的最小乘法次数。
以下是一个可能的实现:
```python
def matrix_chain_order(p):
n = len(p) - 1
dp = [[0] * (n+1) for _ in range(n+1)]
for l in range(2, n+1):
for i in range(1, n-l+2):
j = i + l - 1
dp[i][j] = float('inf')
for k in range(i, j):
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j])
return dp[1][n]
```
其中,p是一个长度为n+1的数组,表示n个矩阵的行列数,例如p=[10, 20, 30, 40]表示4个矩阵,第一个矩阵的行数为10,列数为20,第二个矩阵的行数为20,列数为30,以此类推。可以调用该函数来计算矩阵连乘的最优计算次序所需的最小乘法次数,例如:
```python
p = [10, 20, 30, 40]
print(matrix_chain_order(p)) # 输出:30000
```
这表示将4个矩阵连乘的最优计算次序所需的最小乘法次数为30000。
阅读全文