#include<bits/stdc++.h> using namespace std; using ll = long long; const ll N = 3; ll T; ll n; long long p = 998244353; struct Node { long long m[N][N]; Node() { memset(m, 0, sizeof m); }//矩阵初始化为0的操作 Node operator*(const Node &b) const//定义矩阵乘法运算 { Node c; for (ll i = 0; i < N; i++) for (ll j = 0; j < N; j++) for (ll k = 0; k < N; k++) { c.m[i][j] = (c.m[i][j] + m[i][k] * b.m[k][j]) % p; } return c; } }; Node fun(Node a, long long b) { Node res; for (ll i = 0; i < N; i++) res.m[i][i] = 1;//构造单位矩阵res while (b) { if (b & 1) res = res * a; // 对于奇数次幂,把矩阵a乘到res上 a = a * a; b = b / 2; } return res; } Node x,y; long long fun1() { x.m[0][0] = 1; x.m[0][1] = 0; x.m[0][2] = 1; x.m[1][0] = 0; x.m[1][1] = 1; x.m[1][2] = 1; x.m[2][0] = 2; x.m[2][1] = 2; x.m[2][2] = 1;//构造 y = fun(x,n-1); cout << (y.m[0][0] + y.m[0][2] * 2)%p <<"\n"; return y.m[0][0]; } int main() { cin >> T; for(int i = 0; i< T; i++) { cin >> n; fun1(); } return 0; } 分析时间复杂度

时间: 2024-04-27 09:19:16 浏览: 95
这段代码主要是实现了一个矩阵快速幂,求出一个矩阵的n次幂,其中n是一个正整数。 时间复杂度分析: 1.矩阵乘法的时间复杂度为O(n^3),在该代码中,矩阵大小为3*3,因此矩阵乘法的时间复杂度为O(27)=O(1)。 2.矩阵快速幂的时间复杂度为O(logn),因为在每次循环中,n都会除以2,因此最多进行logn次循环。 综合以上两点,该代码的时间复杂度为O(T*logn),其中T是测试数据的组数。
相关问题

#include <bits/stdc++.h> using namespace std; typedef long long LL; const int mod = 1e9 + 7; int main(){ int n,x; LL ans = 1; unordered_map<int,int> hash; cin >> n; while(n--){ cin >> x; for(int i = 2;i <= x/i; ++i){ while(x % i == 0){ x /= i; hash[i] ++; } } if(x > 1) hash[x] ++; } for(auto i : hash) ans = ans*(i.second + 1) % mod; cout << ans; return 0; } 这一串代码每一步都是什么意思?

这段代码是一个计算给定一组整数的因子个数之积的程序。下面是每一步的解释: 1. `#include <bits/stdc++.h>`:这是一个预处理指令,它包含了所有常用的 C++ 标准库,以便在代码中使用。 2. `using namespace std;`:这是一个命名空间声明,它允许在代码中直接使用标准库中的函数和对象,而无需使用前缀 `std::`。 3. `typedef long long LL;`:这是一个类型定义,将 `long long` 类型重命名为 `LL`,用于表示长整型。 4. `const int mod = 1e9 + 7;`:这是一个常量定义,将 `1e9 + 7` 赋值给变量 `mod`,用于取模运算。 5. `int main()`:这是程序的主函数,程序从这里开始执行。 6. `int n, x;`:定义了两个整型变量 `n` 和 `x`,用于存储输入的值。 7. `LL ans = 1;`:定义一个长整型变量 `ans`,并初始化为 1,用于存储最终的计算结果。 8. `unordered_map<int, int> hash;`:定义了一个无序哈希表 `hash`,用于记录每个数的因子及其出现次数。 9. `cin >> n;`:从标准输入读取一个整数,存储到变量 `n` 中。 10. `while (n--)`:当 `n` 不为 0 时,执行循环体。循环的目的是读取 n 个整数并计算其因子。 11. `cin >> x;`:从标准输入读取一个整数,存储到变量 `x` 中。 12. `for (int i = 2; i <= x / i; ++i)`:循环遍历从 2 到 x 的平方根之间的所有整数 i。循环的目的是找出 x 的所有因子。 13. `while (x % i == 0)`:当 x 能被 i 整除时,执行循环体。循环的目的是将 x 分解为质因数,并记录每个质因数的出现次数。 14. `x /= i;`:将 x 除以 i,更新 x 的值。 15. `hash[i]++;`:将质因数 i 的出现次数加一。 16. `if (x > 1) hash[x]++;`:如果 x 大于 1,则说明 x 是一个大于平方根的质因数,将其出现次数加一。 17. `for (auto i : hash) ans = ans * (i.second + 1) % mod;`:遍历哈希表 hash 中的所有元素,计算每个质因数的因子个数之积,并对 mod 取模。 18. `cout << ans;`:将计算结果输出到标准输出。 19. `return 0;`:返回 0,表示程序正常结束。

解释作用:#include<bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 200; int w[MAXN], v[MAXN], dp[6000000 + 50]; void solve() { int n, sum = 0; scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &w[i]); v[i] = w[i]; sum += w[i]; } for (int i = 1; i <= n; ++i) { for (int j = sum / 2; j >= w[i]; j--) { dp[j] = max(dp[j], dp[j - w[i]] + v[i]); } } printf("%d\n", sum - 2 * dp[sum / 2]); } int main() { solve(); return 0; }

作用是指某种事物对其他事物产生的影响或效果。它可以是积极的或消极的,也可以是有意识的或无意识的。在不同的领域中,作用的概念有不同的应用。例如,在科学研究中,我们可以探究某种物质或力量对其他物质或现象产生的作用;在社会学中,我们可以研究某种文化或制度对人类行为和价值观的作用。总之,作用是描述事物之间关系和相互影响的一个概念。
阅读全文

相关推荐

#include<bits/stdc++.h> #define LL long long #define il inline #define re register #define db double #define eps (1e-5) using namespace std; const int N=500000+10; il LL rd() { LL x=0,w=1;char ch=0; while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();} while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();} return x*w; } #define lc (o<<1) #define rc ((o<<1)|1) #define mid ((l+r)>>1) struct node { int wb[3],las; node(){wb[0]=wb[1]=wb[2]=las=0;} }s[N<<2],nw; il node ad(node a,node b) { node an; an.las=(a.las+b.las)%3; for(int i=0;i<3;i++) an.wb[i]=a.wb[i]+b.wb[(i-a.las+3)%3]; return an; } void bui(int o,int l,int r) { if(l==r) { if(rd()&1) s[o].wb[2-(l&1)]=1,s[o].las=2-(l&1); else s[o].wb[0]=1; return; } bui(lc,l,mid),bui(rc,mid+1,r); s[o]=ad(s[lc],s[rc]); } void modif(int o,int l,int r,int lx) { if(l==r) { if(s[o].las) s[o].wb[2-(l&1)]=s[o].las=0,s[o].wb[0]=1; else s[o].wb[2-(l&1)]=1,s[o].las=2-(l&1),s[o].wb[0]=0; return; } if(lx<=mid) modif(lc,l,mid,lx); else modif(rc,mid+1,r,lx); s[o]=ad(s[lc],s[rc]); } node quer(int o,int l,int r,int ll,int rr) { if(ll<=l&&r<=rr) return s[o]; node a,b; if(ll<=mid) a=quer(lc,l,mid,ll,rr); if(rr>mid) b=quer(rc,mid+1,r,ll,rr); return ad(a,b); } int n,m; LL ans; int main() { n=rd(),m=rd(); bui(1,1,n); while(m--) { int op=rd(); if(op&1) modif(1,1,n,rd()); else { ans=0; int l=rd(),r=rd(); nw=quer(1,1,n,l,r);++nw.wb[0]; ans=1ll*nw.wb[0]*(nw.wb[0]-1)/2+1ll*nw.wb[1]*(nw.wb[1]-1)/2+1ll*nw.wb[2]*(nw.wb[2]-1)/2; printf("%lld\n",ans); } } return 0; }详解每一行代码什么意思并代表什么含义

大家在看

recommend-type

LITE-ON FW spec PS-2801-9L rev A01_20161118.pdf

LITE-ON FW spec PS-2801-9L
recommend-type

Basler GigE中文在指导手册

Basler GigE中文在指导手册,非常简单有效就可设定完毕。
recommend-type

独家2006-2021共16年280+地级市绿色全要素生产率与分解项、原始数据,多种方法!

(写在前面:千呼万唤始出来,我终于更新了!!!泪目啊!继全网首发2005-202 1年省际绿色全要素生产率后,我终于更新了全网最新的2021年的地级市绿色全要素生 产率,几千个数据值,超级全面!并且本次我未发布两个帖子拆分出售,直接在此帖子中一 并分享给大家链接!请按需购买!) 本数据集为2006-2021共计16年间我国2 80+地级市的绿色全要素生产率平衡面板数据(包括累乘后的GTFP结果与分解项EC 、TC),同时提供四种方法的测算结果,共计4000+观测值,近两万个观测点,原始 数据链接这次也附在下方了。 首先是几点说明: ①我同时提供4种测算方法的结果(包 括分解项),均包含于测算结果文档。 ②测算结果与原始数据均为平衡面板数据,经过多 重校对,准确无误;可以直接用于Stata等软件进行回归分析。 ③测算结果中每一种 方法的第一列数据为“指数”即为GML指数,本次测算不采用ML等较为传统的方法(我 认为其不够创新)。 ④地级市数量为284个,原始数据未进行任何插值,均为一手整理 的真实数据。 ⑤(原始数据指标简介)投入向量为四项L:年末就业人数,K:资本存量 (参考复旦大学张
recommend-type

TS流结构分析(PAT和PMT).doc

分析数字电视中ts的结构和组成,并对PAT表,PMT表进行详细的分析,包含详细的解析代码,叫你如何解析TS流中的数据
recommend-type

2017年青年科学基金—填报说明、撰写提纲及模板.

2017年青年科学基金(官方模板)填报说明、撰写提纲及模板

最新推荐

recommend-type

AIMP2 .NET 互操作插件

AIMP2 .NET 互操作插件允许使用托管代码(C#、VB 等)为 AIMP2 编写插件。
recommend-type

工厂垂直提升机sw14可编辑全套技术资料100%好用.zip

工厂垂直提升机sw14可编辑全套技术资料100%好用.zip
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->