编一个resnet网络的代码
时间: 2023-09-21 10:03:15 浏览: 93
ResNet代码
好的,以下是一个简单的ResNet网络代码:
```python
import tensorflow as tf
def identity_block(X, f, filters, stage, block):
"""
实现恒等块
参数:
X -- 输入的tensor类型的数据,维度为( m, n_H_prev, n_W_prev, n_H_prev )
f -- 整数类型,指定主路径中间的卷积窗口的形状
filters -- 整数列表,定义了主路径每层的卷积层中的过滤器数量
stage -- 整数,用于命名层,取决于它们在网络中的位置
block -- 字符串/整数,用于命名层,取决于它们在网络中的位置
返回:
X -- 恒等块的输出,tensor类型,维度为(n_H, n_W, n_C)
"""
# 定义命名规范
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,稍后需要添加回主路径
X_shortcut = X
# 主路径第一部分
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding='valid',
name=conv_name_base + '2a', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径第二部分
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same',
name=conv_name_base + '2b', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径第三部分
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid',
name=conv_name_base + '2c', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 添加输入数据
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def convolutional_block(X, f, filters, stage, block, s=2):
"""
实现卷积块
参数:
X -- 输入的tensor类型的数据,维度为( m, n_H_prev, n_W_prev, n_H_prev )
f -- 整数类型,指定主路径中间的卷积窗口的形状
filters -- 整数列表,定义了主路径每层的卷积层中的过滤器数量
stage -- 整数,用于命名层,取决于它们在网络中的位置
block -- 字符串/整数,用于命名层,取决于它们在网络中的位置
s -- 整数,指定要使用的步幅
返回:
X -- 卷积块的输出,tensor类型,维度为(n_H, n_W, n_C)
"""
# 定义命名规范
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,稍后需要添加回主路径
X_shortcut = X
# 主路径第一部分
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid',
name=conv_name_base + '2a', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径第二部分
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same',
name=conv_name_base + '2b', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径第三部分
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid',
name=conv_name_base + '2c', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 构造捷径
X_shortcut = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid',
name=conv_name_base + '1', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X_shortcut)
X_shortcut = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
# 添加捷径
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def ResNet50(input_shape=(64, 64, 3), classes=6):
"""
实现ResNet50
参数:
input_shape -- 图像数据集的维度
classes -- 整数,分类数
返回:
model -- Keras框架的模型
"""
# 定义输入为维度大小为input_shape的张量
X_input = tf.keras.layers.Input(input_shape)
# 0填充
X = tf.keras.layers.ZeroPadding2D((3, 3))(X_input)
# Stage 1
X = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), name='conv1', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name='bn_conv1')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(X)
# Stage 2
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block='a', s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
# Stage 3
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
# Stage 4
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# Stage 5
X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# 平均池化
X = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), padding='same')(X)
# 输出层
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
# 创建模型
model = tf.keras.models.Model(inputs=X_input, outputs=X, name='ResNet50')
return model
```
这是一个50层的ResNet网络,可以根据需要进行修改。
阅读全文