tensor.view(batch_size, -1)是什么意思
时间: 2024-05-16 07:13:53 浏览: 175
在PyTorch中,`tensor.view(batch_size, -1)`的作用是将一个tensor的形状改变为指定的形状`(batch_size, -1)`。
其中`batch_size`是指定的batch大小,而`-1`表示该维度的大小应该被自动计算,以保持原有tensor中元素数量不变。这样做的好处是,我们可以根据batch大小动态地调整tensor的shape,而不用手动计算每个维度的大小。
例如,假设我们有一个形状为`(4, 5, 6)`的tensor,我们想将它变成一个形状为`(2, -1)`的tensor,这样就能将前两维压缩成一个维度,并且自动计算出新的tensor中第二个维度的大小。具体操作如下:
``` python
import torch
# 创建一个形状为(4, 5, 6)的tensor
x = torch.randn(4, 5, 6)
# 将前两维压缩成一个维度,第二个维度的大小会自动计算
x = x.view(2, -1)
print(x.shape) # 输出: torch.Size([2, 60])
```
这里的`-1`会被自动计算为`60`,即原有tensor中剩余维度的元素数量。
相关问题
import torchimport torch.nn as nnclass MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.Wq = nn.Linear(d_model, d_model) self.Wk = nn.Linear(d_model, d_model) self.Wv = nn.Linear(d_model, d_model) self.fc = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V, mask=None): d_k = Q.size(-1) scores = torch.matmul(Q, K.transpose(-1, -2)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32)) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attention = torch.softmax(scores, dim=-1) output = torch.matmul(attention, V) return output, attention def split_heads(self, x, batch_size): x = x.view(batch_size, -1, self.num_heads, self.depth) return x.permute(0, 2, 1, 3) def forward(self, Q, K, V, mask=None): batch_size = Q.size(0) Q = self.Wq(Q) K = self.Wk(K) V = self.Wv(V) Q = self.split_heads(Q, batch_size) K = self.split_heads(K, batch_size) V = self.split_heads(V, batch_size) scaled_attention, attention = self.scaled_dot_product_attention(Q, K, V, mask) scaled_attention = scaled_attention.permute(0, 2, 1, 3).contiguous() scaled_attention = scaled_attention.view(batch_size, -1, self.d_model) output = self.fc(scaled_attention) return output, attention
上述代码是一个用PyTorch实现的多头注意力机制(Multi-Head Attention)的模块,该模块可以被用来构建神经网络模型。它的参数有:
- d_model:表示输入向量的维度,也就是embedding的维度。
- num_heads:表示attention头的数量。
输入的维度是:
- Q, K, V:三个输入张量的维度都为 [batch_size, seq_length, d_model],其中batch_size代表batch的大小,seq_length代表输入序列的长度,d_model代表输入向量的维度。
- mask:一个shape为[batch_size, 1, seq_length, seq_length]的张量,用于掩盖无效的位置,使得在计算注意力矩阵时,注意力矩阵中无效位置对应的权重为0。如果没有无效位置,则可以设置为None。
class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size
这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的过拟合问题,它通过对真实标签进行平滑处理来减少模型对噪声的敏感度。这段代码的 forward 方法实现了 MLP 模型的前向传播,以及 LabelSmoothingLoss 的计算。其中,true_dist 是经过平滑处理后的真实标签分布,kl 是计算 KL 散度的结果,最终返回的是 kl 的平均值。
阅读全文