pred = torch.zeros(y_test.shape) index = 0 test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=1, shuffle=False) with torch.no_grad(): for x, y in test_loader: test_l2 = 0 x, y = x.cuda(), y.cuda() out = model(x) pred[index] = out test_l2 += myloss(out.view(1, -1), y.view(1, -1)).item() print(index, test_l2) index = index + 1

时间: 2023-12-06 13:03:25 浏览: 32
这段代码看起来像是用 PyTorch 实现的一个测试过程,其中包含以下步骤: 1. 首先定义了一个全零的 tensor `pred`,与 `y_test` 的形状相同,用于存储模型的预测结果。 2. 然后创建了一个 DataLoader,用于将测试数据按照指定的 batch_size 进行分批处理。这里的 batch_size 设为 1,表示每次只处理一个样本。 3. 接着使用 `torch.no_grad()` 语句块,表示在测试过程中不需要进行梯度计算,以减少内存占用和计算时间。 4. 在 for 循环中,每次读取一个 batch 的数据,将其转移到 GPU 上(如果有的话),然后用模型进行前向计算得到预测结果,并将其存储到 `pred` 中。 5. 计算当前 batch 的 loss 值,并将其加到 `test_l2` 变量中。 6. 最后打印出当前 batch 的 index 和 loss 值,同时将 index 加 1,进入下一个 batch 的处理过程。 总的来说,这段代码的作用是用训练好的模型对测试数据进行预测,并计算出测试集上的 loss 值。
相关问题

pred = torch.zeros(y_test.shape) index = 0 test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=1, shuffle=False) with torch.no_grad(): for x, y in test_loader: test_l2 = 0 x, y = x.cuda(), y.cuda() out = model(x).view(-1) pred[index] = out test_l2 += myloss(out.view(1, -1), y.view(1, -1)).item() print(index, test_l2) index = index + 1

根据你提供的代码,我猜测这是在使用 PyTorch 训练一个模型,并在测试集上进行预测并计算损失。代码中的 test_loader 是一个 DataLoader 对象,用于按照 batch_size = 1 的方式将测试集分批次加载。pred 是一个与 y_test 大小相同的全零张量,用于存储模型在测试集上的预测结果。with torch.no_grad() 是一个上下文管理器,它可以禁用梯度计算以减少内存占用。在 for 循环中,每次迭代中的 x 和 y 是一个测试样本和对应的标签。x 和 y 都被移动到 GPU 上。模型 out 的形状被变为一维,并且被保存在 pred 张量中的相应位置。test_l2 用于计算每个测试样本的损失值,myloss 是一个自定义的损失函数。最后,将每个测试样本的损失值打印出来。index 的值递增,以便在 pred 张量中保存每个测试样本的预测值。

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,以下是使用 LDAM 损失函数训练模型的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms from ldam_loss import LDAMLoss # 假设你已经将 LDAM 损失函数的代码存放在 ldam_loss.py 文件中 # 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 use_ema = True model_ema_decay = 0.9998 start_epoch = 1 seed = 1 # 设置随机种子 def seed_everything(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes ) # 加载数据集 train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])), batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True ) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])), batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True ) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 初始化模型和优化器 model = Net().to(DEVICE) optimizer = optim.Adam(model.parameters(), lr=model_lr) # 如果 resume 不为空,则从指定的 checkpoint 恢复模型和优化器 if resume is not None: checkpoint = torch.load(resume) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] + 1 Best_ACC = checkpoint['Best_ACC'] print(f"Resuming from checkpoint {resume}, epoch {start_epoch}") # 使用 LDAM 损失函数 cls_num_list = [1000] * classes criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30).to(DEVICE) # 训练模型 for epoch in range(start_epoch, EPOCHS + 1): train_loss = 0 train_acc = 0 model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(DEVICE), target.to(DEVICE) data, target_a, target_b, lam = mixup_fn(data, target) # mixup 增强 optimizer.zero_grad() output = model(data) loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b) # 计算 mixup 后的损失函数 loss.backward() if CLIP_GRAD: torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪 optimizer.step() train_loss += loss.item() * data.size(0) pred = output.argmax(dim=1, keepdim=True) train_acc += pred.eq(target.view_as(pred)).sum().item() train_loss /= len(train_loader.dataset) train_acc /= len(train_loader.dataset) # 计算测试集上的损失和准确率 test_loss = 0 test_acc = 0 model.eval() with torch.no_grad(): for data, target in test_loader: data, target = data.to(DEVICE), target.to(DEVICE) output = model(data) test_loss += F.cross_entropy(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) test_acc += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_acc /= len(test_loader.dataset) # 更新 Best_ACC 并保存模型 if test_acc > Best_ACC: Best_ACC = test_acc state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'Best_ACC': Best_ACC } torch.save(state, f'model_epoch_{epoch}_acc_{Best_ACC:.4f}.pth') # 打印训练日志 print(f"Epoch {epoch}/{EPOCHS}: train_loss={train_loss:.4f} train_acc={train_acc:.4f} test_loss={test_loss:.4f} test_acc={test_acc:.4f}") ``` 这里使用的是 CIFAR-10 数据集和一个简单的卷积神经网络模型,你需要将其替换成你自己的数据集和模型。

相关推荐

最新推荐

recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

sja1311.x86_64.tar.gz

SQLyong 各个版本,免费下载 SQLyog是业界著名的Webyog公司出品的一款简洁高效、功能强大的图形化MySQL数据库管理工具。使用SQLyog可以快速直观地让您从世界的任何角落通过网络来维护远端的MySQL数据库。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。