class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(6, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x1, x2): x = torch.cat([x1, x2], dim=1) x = self.encoder(x) x = self.decoder(x) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 1, 4, stride=1), nn.Sigmoid() ) def forward(self, x): x = self.conv(x) return x 上述网络结构是什么GAN
时间: 2023-06-24 10:09:03 浏览: 105
这是一个基于DCGAN(Deep Convolutional Generative Adversarial Networks)的GAN(Generative Adversarial Networks)模型,其中Generator使用了卷积神经网络(CNN)作为编码器和解码器,Discriminator也使用了CNN。GAN模型的目的是让Generator生成与真实数据相似的假数据,并让Discriminator判断真假,两个模型通过对抗学习的方式不断地优化,以达到生成更真实的假数据的目的。
相关问题
class Generator(nn.Module): def __init__(self,X_shape,z_dim): super(Generator,self).__init__() self.X_shape=X_shape B,H,W=X_shape self.decoder_input = nn.Linear(z_dim,16*H*W) modules=[] hidden_dims = [256,128] for i in range(len(hidden_dims)-1): modules.append(nn.Sequential(nn.ConvTranspose2d(hidden_dims[i], hidden_dims[i + 1], kernel_size=3, stride = 2, padding=1, output_padding=1), #nn.BatchNorm2d(hidden_dims[i + 1]), nn.LeakyReLU()))
这是一个生成器的类,继承自nn.Module。在初始化时,需要传入输入数据的形状X_shape和噪声向量的维度z_dim。在构造函数中,首先调用父类的构造函数,然后保存X_shape。接下来,根据X_shape和z_dim计算出decoder_input的维度,并创建一个线性层。接着,定义了一个空的modules列表和一个hidden_dims列表,用于存储后续的卷积层和反卷积层。在循环中,对于hidden_dims中的每一对相邻的元素,都创建一个包含反卷积层的Sequential模块,并将其添加到modules列表中。其中,反卷积层的输入通道数为当前元素的值,输出通道数为下一个元素的值,卷积核大小为3,步长为2,填充为1,输出填充为1。最后,将modules列表中的所有模块组合成一个Sequential模块,并保存为self.decoder。
运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,
这是一个用 PyTorch 实现的条件 GAN,以下是代码的简要解释:
首先引入 PyTorch 相关的库和模块:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
```
接下来定义生成器(Generator)和判别器(Discriminator)的类:
```
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, num_filters):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters),
nn.ReLU(),
nn.Linear(num_filters, num_filters*2),
nn.ReLU(),
nn.Linear(num_filters*2, num_filters*4),
nn.ReLU(),
nn.Linear(num_filters*4, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.net(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, num_filters):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters*4),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*4, num_filters*2),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*2, num_filters),
nn.LeakyReLU(0.2),
nn.Linear(num_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.net(x)
return x
```
其中,生成器接受输入维度 input_dim、输出维度 output_dim 和 num_filters 个特征,采用线性层和激活函数构建多层神经网络。判别器接受输入维度 input_dim 和 num_filters 个特征,同样采用线性层和激活函数构建多层神经网络。
最后定义条件 GAN 的类 ConditionalGAN,该类包括生成器、判别器和优化器,以及 train 方法进行训练:
```
class ConditionalGAN(object):
def __init__(self, input_dim, output_dim, num_filters, learning_rate):
self.generator = Generator(input_dim, output_dim, num_filters)
self.discriminator = Discriminator(input_dim+1, num_filters)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate)
self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(data_loader):
...
```
其中,ConditionalGAN 类接受输入维度 input_dim、输出维度 output_dim、特征数 num_filters 和学习率 learning_rate。train 方法则接受数据加载器 data_loader 和训练轮数 num_epochs,用于训练模型。
阅读全文