写一个stm32f103控制rm2006电机完整程序

时间: 2023-07-01 13:09:06 浏览: 61
以下是一个基本的 STM32F103 控制 RM2006 步进电机的完整程序: ```c #include "stm32f10x.h" #define DIR_PIN GPIO_Pin_12 #define STEP_PIN GPIO_Pin_13 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; void delay_ms(uint16_t ms); int main(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); GPIO_InitStructure.GPIO_Pin = DIR_PIN | STEP_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); TIM_TimeBaseStructure.TIM_Period = 50 - 1; // 20 kHz PWM frequency TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 1 us clock TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 25 - 1; // 50% duty cycle TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC4Init(TIM4, &TIM_OCInitStructure); TIM_Cmd(TIM4, ENABLE); while (1) { GPIO_SetBits(GPIOB, DIR_PIN); // Set direction for (int i = 0; i < 200; i++) { GPIO_SetBits(GPIOB, STEP_PIN); delay_ms(5); // 5 ms pulse width GPIO_ResetBits(GPIOB, STEP_PIN); delay_ms(5); } delay_ms(1000); // Wait 1 second GPIO_ResetBits(GPIOB, DIR_PIN); // Reverse direction for (int i = 0; i < 200; i++) { GPIO_SetBits(GPIOB, STEP_PIN); delay_ms(5); GPIO_ResetBits(GPIOB, STEP_PIN); delay_ms(5); } delay_ms(1000); } } void delay_ms(uint16_t ms) { for (volatile uint32_t i = 0; i < (ms * 8000); i++); } ``` 这个程序使用了 STM32F103 的 GPIO 和定时器模块来控制 RM2006 步进电机。程序中,我们使用了 GPIOB 的 12 号和 13 号引脚来分别控制电机的方向和步进信号。同时,我们使用了 TIM4 定时器来产生 PWM 信号,来控制电机转速。 在主循环中,我们设置电机的方向为正方向,并且发送 200 个 5ms 的脉冲来让电机转动。然后等待 1 秒,再将电机方向设置为反方向,再次发送 200 个脉冲来让电机反向转动,并且再次等待 1 秒。 需要注意的是,本程序中的电机控制参数是根据实际情况进行了调整的,具体参数需要根据实际的硬件和电机参数进行调整。

相关推荐

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

启明欣欣stm32f103rct6开发板原理图 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

stm32f103数据手册

完全免积分!!!!! 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR中文数据手册,同样适用于STM32F103RE 、 STM32F103ZE 、 STM32F103VE、STM32F103RD、 STM32F103VD、 STM32F103ZD、STM32F103RC、 STM32F103VC、 STM32F103ZC
recommend-type

STM32F103单片机系统时钟部分归纳

——时钟控制(RCC) 三种不同的时钟源可用作系统时钟(SYSCLOCK): HIS振荡器时钟(由芯片内部RC振荡器提供) HSE振荡器时钟(由芯片外部晶体振荡器提供) PLL时钟(通过倍频HIS或HSE振荡器倍频得到) 另外...
recommend-type

STM32F103C8T6开发板+GY521制作Betaflight飞控板详细图文教程

STM32F103C8T6黑色开发板1个(11.5元) GY-521加速度计模块1个(3.8元) ams1117-3.3电压转换芯片1个(0.38元) 5V有源蜂鸣器1个(0.43元) 5cm*7cm洞洞板1个(0.45元)  肖特基二极管2个 ss8050三极管2个 1k电阻2个,...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。