dir_img = dir_thresh(R, th_dir); figure() imshow(dir_img) gradient_comb = zeros(dim,'uint8'); gradient_comb(((sobelx > 0) & (mag_img > 0) & (dir_img > 0)) ... | ((sobelx > 0) & (sobely > 0))) = uint8(255);解释
时间: 2024-02-13 17:03:38 浏览: 50
这段代码是一段MATLAB代码,主要是对图像进行Canny边缘检测,并将检测结果转化为二值图像。具体解释如下:
1. 调用dir_thresh函数,计算R中第一个通道的边缘梯度方向,将其转化为二值图像dir_img。其中,th_dir是阈值参数,用于控制边缘检测的灵敏度。
2. 创建一个新的图像窗口,将dir_img显示在其中。
3. 定义一个与图像尺寸相同的空数组gradient_comb,用于存储Canny边缘检测的结果。
4. 利用Sobel算子计算R中第一个通道的x方向和y方向的边缘强度sobelx和sobely,以及边缘梯度幅值mag_img。
5. 根据sobelx、mag_img和dir_img的值,将Canny边缘检测的结果存储到gradient_comb中。具体来说,如果sobelx、mag_img和dir_img均大于0,则认为该像素点为边缘点;如果sobelx和sobely均大于0,则认为该像素点为角点。
6. 将gradient_comb转化为二值图像,像素值为255的点为边缘点,其余点为非边缘点。
需要注意的是,这段代码中的Canny边缘检测算法是基于Sobel算子的,并根据梯度方向和梯度幅值来筛选出边缘点。函数dir_thresh实现了边缘梯度方向的计算和二值化。
相关问题
import torchimport cv2import numpy as npfrom models.experimental import attempt_loadfrom utils.general import non_max_suppressionclass YoloV5Detector: def __init__(self, model_path, conf_thresh=0.25, iou_thresh=0.45): self.conf_thresh = conf_thresh self.iou_thresh = iou_thresh self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = attempt_load(model_path, map_location=self.device) self.model.eval() def detect(self, image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device).float() / 255.0 # Run inference with torch.no_grad(): results = self.model(img, size=img.shape[-2:]) results = non_max_suppression(results, conf_thres=self.conf_thresh, iou_thres=self.iou_thresh) return results
这是一个使用 YOLOv5 模型进行目标检测的 Python 代码。该类 YoloV5Detector 包含了模型加载、图片预处理和推理的功能。具体来说,会使用 OpenCV 库读取图片,将其转换为 RGB 格式,然后转换为 PyTorch 的 Tensor 格式,并将其送入 YOLOv5 模型中进行推理。最后,使用非极大值抑制算法(NMS)筛选出检测出来的物体,并返回结果。其中,conf_thresh 和 iou_thresh 分别表示置信度和重叠阈值,可以通过调整这两个参数来控制检测结果的准确率和召回率。
thresh_left = 200 thresh_right = img.shape[1] - 200 thresh_top = 100 thresh_botton = img.shape[0] - 100 mask = np.zeros(img.shape,img.dtype) mask[thresh_top:thresh_botton,thresh_left:thresh_right] = 1 thresh[mask ==0] =0
这段代码的作用是什么?
这段代码的作用是创建一个掩膜(mask),其中图像的中心部分被保留下来,而其余部分被遮盖(设置为0)。具体地说,这段代码会对输入的图像进行裁剪,并将裁剪后的图像中心保留下来,其余部分被遮盖为0。裁剪的区域由阈值(thresh)和阈值范围(thresh_left、thresh_right、thresh_top、thresh_botton)来决定。
阅读全文