function binary_output = dir_thresh(img, thresh) timg = double(img); dim = size(img); h = sobel_kernel(15); sobelx = imfilter(timg,h'); sobely = imfilter(timg,h); absgraddir = atan(abs(sobely) ./ abs(sobelx)); binary_output = zeros(dim,'uint8'); binary_output((absgraddir > thresh(1)) & (absgraddir <= thresh(2))) = uint8(255); end解释

时间: 2023-06-13 11:06:23 浏览: 43
这是一个 MATLAB 函数,用于将图像进行方向阈值化处理。其输入参数为图像 img 和阈值 thresh,输出为二进制图像 binary_output。 函数首先将输入图像转换为 double 类型,并获取其大小 dim。接着使用 Sobel 算子获取水平和垂直方向的梯度值 sobelx 和 sobely。然后计算每个像素点梯度的绝对值的反正切值,即梯度方向 absgraddir。 最后,将二进制图像 binary_output 初始化为全零,然后将梯度方向在阈值范围内的像素点置为 255,其余像素点保持为零。其中,阈值范围为 thresh(1) 到 thresh(2)。 需要注意的是,该函数依赖于 sobel_kernel 函数,该函数应该是用于生成 Sobel 算子的函数。
相关问题

timg = double(img); dim = size(img); h = sobel_kernel(15); sobelx = imfilter(timg,h'); sobely = imfilter(timg,h); absgraddir = atan(abs(sobely) ./ abs(sobelx)); binary_output = zeros(dim,'uint8'); binary_output((absgraddir > thresh(1)) & (absgraddir <= thresh(2))) = uint8(255);解释

这段代码是一段MATLAB代码,主要是对图像进行Sobel边缘检测,并将检测结果转化为二值图像。具体解释如下: 1. 将输入的图像img转换为双精度型timg,并获取图像的尺寸dim。 2. 定义一个Sobel卷积核h,大小为15,用于进行边缘检测。 3. 分别用h的转置和h对timg进行卷积,得到x方向和y方向的边缘强度sobelx和sobely。 4. 计算每个像素点的梯度方向absgraddir,即arctan(|sobely|/|sobelx|)。 5. 根据输入的阈值thresh,将absgraddir大于thresh(1)且小于等于thresh(2)的像素点设置为255,其余像素点设置为0,得到二值图像binary_output。 需要注意的是,这段代码中的边缘检测算法是基于Sobel算子的,而阈值thresh是一个长度为2的数组,用于控制二值化的阈值范围。

binary_img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 8)

这段代码使用OpenCV库中的adaptiveThreshold函数对输入的灰度图像进行自适应阈值处理,得到一个二值化图像。具体参数解释如下: - img:输入的灰度图像。 - 255:输出的像素值的最大值。 - cv2.ADAPTIVE_THRESH_MEAN_C:阈值类型,表示使用自适应阈值处理时使用均值作为阈值计算方法。 - cv2.THRESH_BINARY_INV:二值化类型,表示将大于阈值的像素点设为0,小于等于阈值的像素点设为255,并取反得到二值化图像。 - 11:自适应阈值的计算窗口大小,表示在每个像素点周围11x11的邻域内计算均值作为阈值。 - 8:自适应阈值的计算时的常数项,表示从计算出的均值中减去一个常数项作为实际的阈值。

相关推荐

from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误

import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # 设置训练和验证数据集路径 train_dir = 'train/' validation_dir = 'validation/' # 设置图像的大小和通道数 img_width = 150 img_height = 150 img_channels = 3 # 设置训练和验证数据集的batch size batch_size = 32 # 使用ImageDataGenerator来进行数据增强 train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') validation_datagen = ImageDataGenerator(rescale=1./255) #使用flow_from_directory方法来读取数据集 train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') # 使用Sequential模型来搭建神经网络 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(img_width, img_height, img_channels)), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(128, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(128, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(train_generator, steps_per_epoch=100, epochs=100, validation_data=validation_generator, validation_steps=50) # 保存模型 model.save('cat_dog_classifier.h5')解释每一行代码

最新推荐

recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

wx293儿童预防接种预约小程序-springboot+vue+uniapp.zip(可运行源码+sql文件+文档)

本儿童预防接种预约微信小程序可以实现管理员和用户。管理员功能有个人中心,用户管理,儿童信息管理,疫苗信息管理,儿童接种管理,儿童接种史管理,医疗机构管理,预约接种管理,系统管理等。用户功能有注册登录,儿童信息,疫苗信息,儿童接种,儿童接种史,医疗机构,预约接种,我的收藏管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得医院挂号信息管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息进行添加删除修改操作。管理员可以对儿童信息进行添加,查询修改,删除操作。系统管理员可以管理疫苗信息。系统管理员可以添加,修改,删除儿童接种史。 小程序患者是需要注册才可以进行登录的。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户可以提交儿童接种预约信息。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解