用matlab写一段仿真金纳米颗粒周围电场强度的代码包括用于组装 FEM 系统矩阵和载荷向量的自定义函数

时间: 2023-06-19 12:03:38 浏览: 168
以下是一段用于模拟金纳米颗粒周围电场强度的 MATLAB 代码,其中包括组装 FEM 系统矩阵和载荷向量的自定义函数。 首先,我们需要定义一些参数,例如金纳米颗粒的半径、电导率、电荷密度等等。这些参数将用于计算边界条件和方程系数。 ```matlab % Define parameters r = 10e-9; % radius of gold nanoparticle eps0 = 8.85418782e-12; % permittivity of free space epsr = 1; % relative permittivity of surrounding medium sigma = 4.1e7; % electrical conductivity of gold rho = 0; % charge density (for simplicity, assume no charge) ``` 接下来,我们需要定义一个函数 `assembleSystemMatrix`,该函数将组装 FEM 系统矩阵。该函数需要输入网格、边界条件和参数,并输出一个稀疏矩阵 `A`。 ```matlab function A = assembleSystemMatrix(mesh, boundaryConditions, params) % Get number of nodes and elements numNodes = size(mesh.nodes, 1); numElements = size(mesh.elements, 1); % Initialize system matrix and load vector A = sparse(numNodes, numNodes); b = zeros(numNodes, 1); % Loop over elements for i = 1:numElements % Get element nodes and coordinates nodes = mesh.elements(i, :); coords = mesh.nodes(nodes, :); % Compute element stiffness matrix and load vector [Ke, fe] = computeElement(params, coords); % Add element contributions to system matrix and load vector A(nodes, nodes) = A(nodes, nodes) + Ke; b(nodes) = b(nodes) + fe; end % Apply boundary conditions A(boundaryConditions.nodes, :) = 0; A(boundaryConditions.nodes, boundaryConditions.nodes) = speye(length(boundaryConditions.nodes)); end ``` 在上面的函数中,我们首先获取节点和元素的数量,然后初始化系统矩阵和载荷向量。接下来,我们循环遍历每个元素,计算元素刚度矩阵和载荷向量,并将它们添加到系统矩阵和载荷向量中。最后,我们应用边界条件,将节点的行和列置为零并将其对角线设置为 1。 接下来,我们需要定义一个函数 `computeElement`,该函数将计算每个元素的刚度矩阵和载荷向量。该函数需要输入元素的坐标和参数,并输出元素的刚度矩阵 `Ke` 和载荷向量 `fe`。 ```matlab function [Ke, fe] = computeElement(params, coords) % Compute element area and centroid area = polyarea(coords(:, 1), coords(:, 2)); centroid = mean(coords); % Compute element stiffness matrix and load vector Ke = zeros(3, 3); fe = zeros(3, 1); for i = 1:3 for j = 1:3 % Compute element stiffness matrix Ke(i, j) = (sigma / area) * trapz(coords(:, i), coords(:, j)); % Compute element load vector fe(i) = -rho * area / 3; end end end ``` 在上面的函数中,我们首先计算元素的面积和重心。接下来,我们循环遍历每个节点,并计算节点的刚度矩阵和载荷向量。最后,我们将所有节点的贡献相加,得到元素的刚度矩阵和载荷向量。 最后,我们需要定义一个函数 `solveFEM`,该函数将解决 FEM 系统并返回节点的电势。 ```matlab function phi = solveFEM(mesh, boundaryConditions, params) % Assemble system matrix A = assembleSystemMatrix(mesh, boundaryConditions, params); % Solve system b = zeros(size(mesh.nodes, 1), 1); phi = A \ b; end ``` 在上面的函数中,我们首先调用 `assembleSystemMatrix` 函数组装系统矩阵。然后,我们初始化载荷向量并使用 MATLAB 的反斜杠运算符求解系统。最后,我们返回节点的电势 `phi`。 使用上述函数,我们可以模拟金纳米颗粒周围的电场强度。以下是一个完整的示例程序,其中包括网格生成、边界条件设置和电场强度可视化。 ```matlab % Define parameters r = 10e-9; % radius of gold nanoparticle eps0 = 8.85418782e-12; % permittivity of free space epsr = 1; % relative permittivity of surrounding medium sigma = 4.1e7; % electrical conductivity of gold rho = 0; % charge density (for simplicity, assume no charge) % Generate mesh (circle with radius r) numNodes = 1000; theta = linspace(0, 2*pi, numNodes)'; x = r*cos(theta); y = r*sin(theta); nodes = [x, y]; elements = delaunay(x, y); mesh = struct('nodes', nodes, 'elements', elements); % Set boundary conditions (grounded boundary) boundaryNodes = find(sqrt(x.^2 + y.^2) == r); boundaryConditions = struct('nodes', boundaryNodes, 'values', zeros(length(boundaryNodes), 1)); % Solve FEM system phi = solveFEM(mesh, boundaryConditions, struct('sigma', sigma)); % Visualize electric field [Ex, Ey] = gradient(-phi); E = sqrt(Ex.^2 + Ey.^2); figure; tri = delaunay(x, y); trisurf(tri, x, y, zeros(size(x)), E); colormap(jet); axis equal; title('Electric field strength around gold nanoparticle'); xlabel('X'); ylabel('Y'); zlabel('Electric field strength'); ``` 该程序将生成一个圆形网格,其中金纳米颗粒的电荷密度为零,边界条件为接地。程序将解决 FEM 系统并可视化节点的电势和电场强度。
阅读全文

相关推荐

最新推荐

recommend-type

matlab实现三角形平面的有限元分析

在实际的MATLAB程序中,我们看到一系列的矩阵操作,如`zeros`函数创建零矩阵,`det`函数计算行列式的值,`mat2cell`和`cell2mat`函数进行矩阵分块和合并,以及`ones`函数生成全1矩阵。这些操作都是MATLAB在处理大型...
recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理
recommend-type

给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。编写一个C语言程序

为了编写一个C语言程序来解决这个问题,我们需要遍历给定范围内的所有连续4个数字,并检查每个组合是否能构成一个无重复数字的三位数。这里是一个简单的示例程序: ```c #include <stdio.h> // 函数定义,用于生成并检查无重复数字的3位数 void generate_unique_3_digit(int A) { for (int i = A; i <= A + 3; i++) { int num = i * 100 + (i+1) * 10 + (i+2); if (num >= 100 && num < 1000 && is_uni