test_preds = np.zeros((test_df.shape[0],2)) for i in range(5): test_preds[:, 0] += weights[i] * final_test_predictions[i][:, 0] test_preds[:, 1] += weights[i] * final_test_predictions[i][:, 1] test_preds /= sum(weights) test_preds
时间: 2023-12-17 17:04:21 浏览: 66
这段代码是用来计算测试集上的预测概率的加权平均值。首先,初始化一个全零矩阵test_preds,其形状为(test_df.shape[0], 2),其中test_df.shape[0]表示测试集样本的数量。然后,对于每一折的预测结果final_test_predictions[i],将其第一列与第二列分别乘以对应的权重weights[i],并累加到test_preds的对应列中。最后,将test_preds除以权重和sum(weights),得到加权平均后的预测概率。最终的test_preds是一个形状为(test_df.shape[0], 2)的矩阵,其中每一行表示一个样本在两个类别上的预测概率。
相关问题
这段程序的功能? for subject_id, model_file in personalised_cps.items(): model = torch.load(model_file, map_location=config.device) subj_dev_labels, subj_dev_preds = get_predictions(model=model, task=PERSONALISATION, data_loader=id2data_loaders[subject_id]['devel'], use_gpu=use_gpu) all_dev_labels.append(subj_dev_labels) all_dev_preds.append(subj_dev_preds) all_dev_ids.extend([subject_id]*subj_dev_labels.shape[0]) subj_test_labels, subj_test_preds = get_predictions(model=model, task=PERSONALISATION, data_loader=id2data_loaders[subject_id]['test'], use_gpu=use_gpu) all_test_labels.append(subj_test_labels) all_test_preds.append(subj_test_preds) all_test_ids.extend([subject_id]*subj_test_labels.shape[0]) all_dev_labels = np.concatenate(all_dev_labels) all_dev_preds = np.concatenate(all_dev_preds) all_test_labels = np.concatenate(all_test_labels) all_test_preds = np.concatenate(all_test_preds)
这段程序的功能是进行个性化推荐的模型评估。首先,它遍历一个包含个性化模型文件路径的字典 personalized_cps,通过使用torch.load加载模型,并在指定设备上进行评估。对于每个模型,它会将开发集和测试集的真实标签和预测值存储在相应的数组 all_dev_labels、all_dev_preds、all_test_labels 和 all_test_preds 中,同时将子主题的 id 存储在 all_dev_ids 和 all_test_ids 中。最后,它使用 numpy.concatenate 将所有主题的标签和预测值合并成一个数组,以便进行后续的模型评估。
def _pred(sentence, temperature=1): if len(sentence) < max_len: print('in def _pred,length error ') return sentence = sentence[-max_len:] x_pred = np.zeros((1, max_len, len(words))) for t, char in enumerate(sentence): x_pred[0, t, word2numF(char)] = 1. preds = model.predict(x_pred, verbose=0)[0] preds = np.asarray(preds).astype('float64') exp_preds = np.power(preds, temperature) # 计算所有备选输出文字概率`preds`的`temperature`次方 preds = exp_preds / np.sum(exp_preds) # 重新统计概率分布 pro = np.random.choice(range(len(preds)), 1, p=preds) # 根据新概率随机选择候选文字 next_index = int(pro.squeeze()) next_char = num2word[next_index] return next_char
这段代码是一个用于生成文本的函数 `_pred`,它接受一个字符串 `sentence` 和一个温度参数 `temperature` 作为输入,返回一个字符作为输出。这个函数的实现基于一个训练好的模型,并利用该模型对给定的 `sentence` 进行预测,得到下一个字符的概率分布。然后,使用温度参数 `temperature` 对概率分布进行调节,加入一定的随机性,最后根据新的概率分布随机选择一个候选字符作为输出,并将其返回。
阅读全文