correct_preds = 0 total_preds = 0 with torch.no_grad(): for data in test_iter: images, labels = data images, labels = images.to(device), labels.to(device) outputs = model(images) _, preds = torch.max(outputs.data, 1) total_preds += labels.size(0) correct_preds = torch.sum(torch.eq(preds, labels.data)) total_preds = len(labels) accuracy = correct_preds / total_preds
时间: 2024-03-19 09:43:04 浏览: 84
根据您提供的代码,您想计算模型在测试集上的准确率。但是,您在计算正确预测数和总预测数时存在问题。代码中应该将变量 correct_preds 和 total_preds 的赋值语句修改为:
```
correct_preds += torch.sum(torch.eq(preds, labels.data))
total_preds += labels.size(0)
```
这样才能正确计算模型在测试集上的准确率。另外,您在计算准确率时,应该将总预测数转换为 float 类型,否则准确率将始终为 0。可以使用以下代码计算准确率:
```
accuracy = correct_preds.float() / total_preds
```
希望对您有所帮助!
相关问题
解读这段代码def val(val_set, max_iter=100, flag=False): print('Start val') data_loader = torch.utils.data.DataLoader( val_set, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers)) val_iter = iter(data_loader) n_correct = 0 loss_avg = utils.averager() if not flag: max_iter = min(max_iter, len(data_loader)) else: max_iter = max(max_iter, len(data_loader)) for i in range(max_iter): # data = val_iter.next() # # data = next(val_iter) # try: # data=next(val_iter) # except StopIteration: # return try: data = val_iter.next() except: val_iter = iter(data_loader) # 再次读取,获取数据 data = val_iter.next() cpu_images, cpu_texts = data batch_size = cpu_images.size(0) utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts) utils.loadData(text, t) utils.loadData(length, l) with torch.no_grad(): crnn.eval() preds = crnn(image) crnn.train() preds_size = torch.IntTensor([preds.size(0)] * batch_size) cost = criterion(preds, text, preds_size, length) loss_avg.add(cost) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) sim_preds = converter.decode(preds.data, preds_size.data, raw=False) for pred, target in zip(sim_preds, cpu_texts): if pred == target: n_correct += 1
这段代码是一个用于验证模型的函数。它接收一个数据集 `val_set`,将其封装成一个 `DataLoader` 对象,并迭代 `max_iter` 次进行验证。如果 `flag` 为 `False`,则 `max_iter` 不得超过数据集的长度;否则 `max_iter` 不得小于数据集的长度。在每次迭代中,函数从 `val_iter` 中获取一个批次的数据,并将其传入模型进行预测。然后计算预测结果与真实标签之间的损失,并将其加入到 `loss_avg` 中。同时,函数还统计了预测正确的数量 `n_correct`。最后,函数返回 `n_correct` 和 `loss_avg`。
这段程序的功能? for subject_id, model_file in personalised_cps.items(): model = torch.load(model_file, map_location=config.device) subj_dev_labels, subj_dev_preds = get_predictions(model=model, task=PERSONALISATION, data_loader=id2data_loaders[subject_id]['devel'], use_gpu=use_gpu) all_dev_labels.append(subj_dev_labels) all_dev_preds.append(subj_dev_preds) all_dev_ids.extend([subject_id]*subj_dev_labels.shape[0]) subj_test_labels, subj_test_preds = get_predictions(model=model, task=PERSONALISATION, data_loader=id2data_loaders[subject_id]['test'], use_gpu=use_gpu) all_test_labels.append(subj_test_labels) all_test_preds.append(subj_test_preds) all_test_ids.extend([subject_id]*subj_test_labels.shape[0]) all_dev_labels = np.concatenate(all_dev_labels) all_dev_preds = np.concatenate(all_dev_preds) all_test_labels = np.concatenate(all_test_labels) all_test_preds = np.concatenate(all_test_preds)
这段程序的功能是进行个性化推荐的模型评估。首先,它遍历一个包含个性化模型文件路径的字典 personalized_cps,通过使用torch.load加载模型,并在指定设备上进行评估。对于每个模型,它会将开发集和测试集的真实标签和预测值存储在相应的数组 all_dev_labels、all_dev_preds、all_test_labels 和 all_test_preds 中,同时将子主题的 id 存储在 all_dev_ids 和 all_test_ids 中。最后,它使用 numpy.concatenate 将所有主题的标签和预测值合并成一个数组,以便进行后续的模型评估。
阅读全文