def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc 用1000字描述这段代码
时间: 2024-04-28 21:21:16 浏览: 173
这段代码是用来训练深度神经网络的,其中 model 是要被训练的模型,train_loader 是一个 PyTorch 数据加载器,criterion 是一个损失函数,optimizer 是一个优化器。在训练过程中,首先将模型设为训练模式。然后在数据加载器中遍历每个 batch,将优化器的梯度清零,并将输入数据通过模型得到输出。之后计算模型输出与真实标签的损失,并进行反向传播更新模型参数。在每个 batch 中,记录训练损失和训练精度,用于后续的评估和可视化。最后,计算整个数据集上的平均训练损失和训练精度,并返回这两个值。
相关问题
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))
这是一个基于PyTorch框架的CNN模型的训练过程。代码中定义了两个函数:train和test,分别用于训练模型和测试模型。
在训练过程中,首先将模型设置为训练模式,然后遍历训练数据集,对每个batch的数据进行前向传播、反向传播和优化器更新。在每个batch的训练结束后,计算该batch的损失和精度,并将其累加到总的训练损失和训练精度中。
在测试过程中,首先将模型设置为评估模式,然后遍历测试数据集,对每个batch的数据进行前向传播和损失计算。在每个batch的测试结束后,计算该batch的损失和精度,并将其累加到总的测试损失和测试精度中。
最后,将训练过程中的损失和精度以及测试过程中的损失和精度保存到相应的列表中,并打印出当前epoch的训练损失、训练精度、测试损失和测试精度。
整个训练过程会重复执行500个epoch,每个epoch都是一个完整的训练和测试过程。
def train(model, loader, criterion, optimizer, device): model.train() running_loss = 0.0 correct = 0 total = 0 for batch_idx, (inputs, labels) in enumerate(loader): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs, 1) _, true_labels = torch.max(labels, 1) total += true_labels.size(0) correct += (predicted == true_labels).sum().item() print("Train Loss: {:.4f}, Acc: {:.2f}%".format(running_loss / (batch_idx + 1), 100 * correct / total))
这是一个用于训练模型的函数。以下是函数的详细解释:
- `train` 函数接受五个参数:`model`(模型),`loader`(数据加载器),`criterion`(损失函数),`optimizer`(优化器)和 `device`(设备)。
- 在函数开始时,将模型设置为训练模式(`model.train()`)。
- 初始化 `running_loss`(累计损失值),`correct`(正确预测的数量)和 `total`(总样本数)为零。
- 使用 `enumerate(loader)` 迭代数据加载器中的批次数据。
- 将输入数据和标签移到指定的设备上(`inputs, labels = inputs.to(device), labels.to(device)`)。
- 清空优化器的梯度(`optimizer.zero_grad()`)。
- 通过模型前向传播计算输出(`outputs = model(inputs)`)。
- 计算损失值(`loss = criterion(outputs, labels)`)。
- 根据损失值计算梯度并进行反向传播(`loss.backward()`)。
- 使用优化器更新模型的参数(`optimizer.step()`)。
- 累计损失值(`running_loss += loss.item()`)。
- 计算预测值和真实标签的正确数量(`_, predicted = torch.max(outputs, 1)` 和 `_, true_labels = torch.max(labels, 1)`)。
- 更新总样本数(`total += true_labels.size(0)`)和正确预测的数量(`correct += (predicted == true_labels).sum().item()`)。
- 在每个批次结束后,打印训练损失和准确率(`print("Train Loss: {:.4f}, Acc: {:.2f}%".format(running_loss / (batch_idx + 1), 100 * correct / total))`)。
这个函数用于训练模型。它使用给定的数据加载器迭代数据批次,计算损失并进行反向传播更新模型参数,同时计算训练损失和准确率。
阅读全文