y_pred = cnn.predict_classes(X_test)
时间: 2023-10-09 18:07:39 浏览: 188
在使用 Keras 深度学习框架中,`predict_classes` 方法已经被弃用,推荐使用 `predict` 方法并使用 `numpy.argmax` 函数获取预测结果。
您可以将 `predict_classes` 方法替换为 `predict` 方法,并使用以下代码获取预测结果:
```
y_pred = np.argmax(cnn.predict(X_test), axis=-1)
```
其中,`np.argmax` 函数返回数组中最大值的索引,`axis=-1` 表示在最后一个轴上执行操作。这样,`y_pred` 将会是一个一维数组,包含每个测试样本的预测类别。
相关问题
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))
这是一个使用卷积神经网络(CNN)进行二分类的模型,数据经过了标准化和PCA特征选择的预处理。模型使用了一个卷积层(Conv1D)和一个池化层(MaxPooling1D),然后通过一个全连接层(Dense)输出最终结果。训练过程中使用了类别权重(class_weights)来平衡样本不均衡问题。最终输出了预测值的准确率(accuracy)、ROC曲线下面积(auc)、混淆矩阵(confusion_matrix)和分类报告(classification_report)。
python LSTM-CNN模型程序
下面是一个使用Python和Keras构建LSTM-CNN模型的示例程序:
```python
from keras.models import Sequential
from keras.layers import LSTM, Conv1D, MaxPooling1D, Dropout, Dense
# 构建模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(sequence_length, features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))
# 预测
y_pred = model.predict(X_test)
# 评估模型
score = model.evaluate(X_test, y_test)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
上述代码中,首先导入了需要的库,然后通过Sequential模型来构建LSTM-CNN模型。模型中使用了Conv1D和MaxPooling1D层进行卷积和池化操作,LSTM层处理序列数据,Dropout层用于防止过拟合,最后通过Dense层进行分类。
在编译模型时,设置了损失函数(categorical_crossentropy)、优化器(adam)以及评估指标(accuracy)。
接下来,使用fit函数进行模型训练,传入训练数据(X_train、y_train)和测试数据(X_test、y_test),设定批量大小、迭代次数等参数。
然后,可以使用predict函数对测试集进行预测,生成预测结果y_pred。
最后,使用evaluate函数对模型在测试集上进行评估,输出损失(loss)和准确率(accuracy)。
请注意,上述代码只是一个示例,具体的模型架构和参数设置可能需要根据实际情况进行调整和改进。此外,还需要根据具体数据的特点进行数据预处理和特征工程。
阅读全文