x_tmp=I*ifft(fft(yr(k,:),signalLen).*fft(h(k,:),signalLen))

时间: 2023-12-17 07:04:20 浏览: 32
这行代码是进行多相滤波的核心部分。 首先,对下采样后的信号yr(k,:)和多相滤波器系数h(k,:)进行FFT变换得到频域表示,长度均为signalLen。 然后,将频域表示相乘,再进行逆FFT得到滤波后的信号x_tmp,长度为signalLen。 最后,将x_tmp中的信号向左移动滤波器长度的一半,即circshift(x_tmp,[0,-delay]),得到消除了时延的滤波后的信号x(k,:)。
相关问题

%% 输入信号延迟+下采样+相移+多相滤波 for k=1:I yr(k,:)=yt(k:I:end).'.*(-1).^(0:signalLen-1);%I是下采样因子,从yt中每隔I个样点取一个,然后乘复数相移系数,与发射的y0相同 % 多相滤波 delay=size(h,2)/2;%滤波延迟,前面减1了这里不用减1?? x_tmp=I*ifft(fft(yr(k,:),signalLen).*fft(h(k,:),signalLen));%滤波 x(k,:)=circshift(x_tmp,[0,-delay]);%时延消除 % plot(1:signalLen,yr(k,:),'bo-',1:signalLen,x(k,:),'r.-') end %% 相移+IFFT for r=1:signalLen%每一路信号包含n1+I个采样点 mfft(:,r)=x(:,r).'.*exp(-1j*pi/I*(0:(I-1)));%相移 mhat(:,r)=ifft(mfft(:,r));%对每一个采样时刻的I路信号,计算离散傅立叶反变换 end %% 解调频率 figure, index=[1,I:-1:2];%第一个索引是1,然后从8到2,步长是-1 for k=1:I%产生I路信号 %频域去噪 mf=fft(mhat(k,:)); thrd_mf=max(abs(mf))/2;%阈值设置 mf(abs(mf)<thrd_mf)=0; mhat(k,:)=ifft(mf);%还原时域信号 subplot(4,2,k);plot(t,I*real(mhat(index(k),:)),'.-', t,m(k,:),'ro-');legend('接收解调信号','原始发射信号');% pause()%虚部是cos end

这段代码是在进行信号处理,包括信号延迟、下采样、相移、多相滤波、解调频率等操作。其中,首先将接收到的信号进行下采样,并乘上复数相移系数与发射的信号相同,然后进行多相滤波,消除滤波延迟,并进行时延消除。接着,对每一个采样时刻的I路信号,进行相移和离散傅立叶反变换。最后,对每个子带进行频域去噪,设置阈值后,进行还原时域信号,并与原始发射信号进行比较。

clc; clear; close all; tic; N=128; M=[4 16 32 64]; D=5; c=0.15; nt=0.1289; nr=0.9500; N_ofdm=1000; snr_dB=1:18; SNR=10.^(snr_dB./10); for kk=1:length(snr_dB) N_fft=N*2+2; for jj=1:length(M) base_data=randi([0 1],1,N*N_ofdm*log2(M(jj))); data_temp1= reshape(base_data,log2(M(jj)),[])'; data_temp2= bi2de(data_temp1); mod_data = qammod(data_temp2,M(jj)); data=reshape(mod_data,N,[])'; H_data=zeros(N_ofdm,N_fft); H_data(:,2:N_fft/2)= data; H_data(:,N_fft/2+2:N_fft)= conj(fliplr(data)); ifft_data=ifft(H_data,[],2); ifft_data=ifft_data+0.02*ones(size(ifft_data)); Noise=awgn(ifft_data,SNR(kk),'measured')-ifft_data; Rx_data=ifft_data*nt*nr*exp(-c*D)+Noise; Rx_data=Rx_data/(nt*nr*exp(-c*D)) fft_data=fft(Rx_data,[],2); Rx_psk_data=fft_data(:,2:N_fft/2); demodulation_data = qamdemod(Rx_psk_data',M(jj)); demodulation_data= reshape(demodulation_data,[],1); temp1=de2bi(demodulation_data); err(kk,jj)=sum(sum((temp1~=data_temp1))); end BER(kk,:)=err(kk,:)./(N*N_ofdm*log2(M(jj))); end figure(); for a=1:length(M) semilogy(snr_dB,BER(:,a),'*-','LineWidth',1.5);hold on; end代码解释

这是一段 Matlab 代码,实现了一个基于 OFDM 的调制解调系统,其中包括了 AWGN 噪声和信道衰落的模型。具体解释如下: - clc; clear; close all;:清空 Matlab 工作区,关闭所有打开的图形窗口。 - tic;:开始计时。 - N=128; M=[4 16 32 64]; D=5; c=0.15; nt=0.1289; nr=0.9500; N_ofdm=1000;:定义了一些常量和参数,其中 N 表示子载波数,M 表示调制阶数,D 表示信道长度,c 表示光速,nt 和 nr 分别表示发射天线和接收天线的天线增益,N_ofdm 表示 OFDM 符号个数。 - snr_dB=1:18; SNR=10.^(snr_dB./10);:定义了一组信噪比值和对应的信噪比。 - for kk=1:length(snr_dB):对每个信噪比进行循环。 - N_fft=N*2+2;:计算 FFT 点数。 - for jj=1:length(M):对每个调制阶数进行循环。 - base_data=randi([0 1],1,N*N_ofdm*log2(M(jj)));:生成随机的二进制数据。 - data_temp1= reshape(base_data,log2(M(jj)),[])'; data_temp2= bi2de(data_temp1);:将二进制数据按照调制阶数转换成十进制数据。 - mod_data = qammod(data_temp2,M(jj));:进行 QAM 调制。 - data=reshape(mod_data,N,[])';:将调制后的数据按照子载波数进行分组。 - H_data=zeros(N_ofdm,N_fft); H_data(:,2:N_fft/2)= data; H_data(:,N_fft/2+2:N_fft)= conj(fliplr(data));:将数据填充到 OFDM 符号中,其中 H_data 表示填充后的 OFDM 符号。 - ifft_data=ifft(H_data,[],2);:进行 IFFT 变换。 - ifft_data=ifft_data+0.02*ones(size(ifft_data));:添加循环前缀。 - Noise=awgn(ifft_data,SNR(kk),'measured')-ifft_data;:添加 AWGN 噪声。 - Rx_data=ifft_data*nt*nr*exp(-c*D)+Noise;:将符号传输到接收端,并考虑信道衰落。 - Rx_data=Rx_data/(nt*nr*exp(-c*D)):归一化处理。 - fft_data=fft(Rx_data,[],2);:进行 FFT 变换。 - Rx_psk_data=fft_data(:,2:N_fft/2);:提取有效数据。 - demodulation_data = qamdemod(Rx_psk_data',M(jj));:进行 QAM 解调。 - demodulation_data= reshape(demodulation_data,[],1); temp1=de2bi(demodulation_data);:将十进制数据转换成二进制数据。 - err(kk,jj)=sum(sum((temp1~=data_temp1)));:计算误码率。 - end BER(kk,:)=err(kk,:)./(N*N_ofdm*log2(M(jj)));:计算比特误码率。 - end:结束循环。 - figure(); for a=1:length(M):绘制误码率曲线。 - semilogy(snr_dB,BER(:,a),'*-','LineWidth',1.5);hold on; - end:结束绘图。 - 解释完毕。

相关推荐

function [Result, cost, SNR]= denoising(input, lambda, max_Iter, label, Ori_Img) cost = []; SNR = []; Img_ori = im2double(input); [height,width,ch] = size(input);1 denom_tmp = (abs(psf2otf([1, -1],[height,width])).^2 + abs(psf2otf([1; -1],[height,width])).^2) if ch~=1 denom_tmp = repmat(denom_tmp, [1 1 ch]); end % Initialize Vraiables Diff_R_I = zeros(size(Img_ori)); grad_x = zeros(size(Img_ori)); grad_y = zeros(size(Img_ori)); aux_Diff_R_I = zeros(size(Img_ori)); aux_grad_x = zeros(size(Img_ori)); aux_grad_y = zeros(size(Img_ori)); Cost_prev = 10^5; alpha = 500; beta = 50; Iter = 0; % split bregman while Iter < max_Iter grad_x_tmp = grad_x + aux_grad_x/alpha; grad_y_tmp = grad_y + aux_grad_y/alpha; numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori); numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)]; numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)]; denomin = 1 + alpha/betadenom_tmp; numer = numer_alpha+alpha/betafft2(numer_beta); Result = real(ifft2(numer./denomin)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; grad_x = Result_x - aux_grad_x/alpha; grad_y = Result_y - aux_grad_y/alpha; Mag_grad_x = abs(grad_x); Mag_grad_y = abs(grad_y); if ch~=1 Mag_grad_x = repmat(sum(Mag_grad_x,3), [1,1,ch]); Mag_grad_y = repmat(sum(Mag_grad_y,3), [1,1,ch]); end grad_x = max(Mag_grad_x-lambda/alpha,0).(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).(grad_y./Mag_grad_y); grad_x(Mag_grad_x == 0) = 0; grad_y(Mag_grad_y == 0) = 0; Diff_R_I = Result-Img_ori-aux_Diff_R_I/beta; Mag_Diff_R_I = abs(Diff_R_I); if ch~=1 Mag_Diff_R_I = repmat(sum(Mag_Diff_R_I,3), [1,1,ch]); end if label == 1 Diff_R_I=max(Mag_Diff_R_I-1/beta,0).(Diff_R_I./Mag_Diff_R_I); else Diff_R_I=(beta/(2+beta)) * Diff_R_I; end Diff_R_I(Mag_Diff_R_I == 0) = 0; aux_Diff_R_I = aux_Diff_R_I + beta * (Diff_R_I - (Result - Img_ori )); aux_grad_x = aux_grad_x + alpha * (grad_x - (Result_x )); aux_grad_y = aux_grad_y + alpha * (grad_y - (Result_y)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; if label == 1 Cost_cur = sum(abs(Result(:) - Img_ori(:))) + lambdasum(abs(Result_x(:)) + abs(Result_y(:))); else Cost_cur = sum(abs(Result(:) - Img_ori(:)).^2) + lambda*sum(abs(Result_x(:)) + abs(Result_y(:))); end Diff = abs(Cost_cur - Cost_prev); Cost_prev = Cost_cur; cost = [cost Cost_cur]; SNR_tmp = sqrt( sum( (Result(:)-double(Ori_Img(:))).^2 )) / sqrt(numel(Result)); SNR = [SNR SNR_tmp]; Iter = Iter + 1; end end

import numpy as npimport cv2# 读取图像img = cv2.imread('lena.png', 0)# 添加高斯噪声mean = 0var = 0.1sigma = var ** 0.5noise = np.random.normal(mean, sigma, img.shape)noisy_img = img + noise# 定义维纳滤波器函数def wiener_filter(img, psf, K=0.01): # 计算傅里叶变换 img_fft = np.fft.fft2(img) psf_fft = np.fft.fft2(psf) # 计算功率谱 img_power = np.abs(img_fft) ** 2 psf_power = np.abs(psf_fft) ** 2 # 计算信噪比 snr = img_power / (psf_power + K) # 计算滤波器 result_fft = img_fft * snr / psf_fft result = np.fft.ifft2(result_fft) # 返回滤波结果 return np.abs(result)# 定义维纳滤波器的卷积核kernel_size = 3kernel = np.ones((kernel_size, kernel_size)) / kernel_size ** 2# 计算图像的自相关函数acf = cv2.calcHist([img], [0], None, [256], [0, 256])# 计算维纳滤波器的卷积核gamma = 0.1alpha = 0.5beta = 1 - alpha - gammapsf = np.zeros((kernel_size, kernel_size))for i in range(kernel_size): for j in range(kernel_size): i_shift = i - kernel_size // 2 j_shift = j - kernel_size // 2 psf[i, j] = np.exp(-np.pi * ((i_shift ** 2 + j_shift ** 2) / (2 * alpha ** 2))) * np.cos(2 * np.pi * (i_shift + j_shift) / (2 * beta))psf = psf / np.sum(psf)# 对带噪声图像进行维纳滤波filtered_img = wiener_filter(noisy_img, psf)# 显示结果cv2.imshow('Original Image', img)cv2.imshow('Noisy Image', noisy_img)cv2.imshow('Filtered Image', filtered_img)cv2.waitKey(0)cv2.destroyAllWindows()这段代码报错为Traceback (most recent call last): File "<input>", line 1, in <module> File "D:\Pycharm\PyCharm 2020.3.5\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Pycharm\PyCharm 2020.3.5\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "E:/Python_project/class_/weinalvboqi.py", line 54, in <module> filtered_img = wiener_filter(noisy_img, psf) File "E:/Python_project/class_/weinalvboqi.py", line 25, in wiener_filter snr = img_power / (psf_power + K) ValueError: operands could not be broadcast together with shapes (1024,2800) (3,3)什么意思,如何修改

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步