MATLAB水果识别代码
时间: 2023-10-24 09:08:47 浏览: 120
识别不同水果的Matlab代码
5星 · 资源好评率100%
以下是MATLAB实现水果识别的示例代码:
1. 数据准备
```matlab
% 加载数据集
fruitDataset = imageDatastore('fruits', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分成训练集和测试集
[trainDataset, testDataset] = splitEachLabel(fruitDataset, 0.8, 'randomize');
% 显示部分数据
numTrainImages = numel(trainDataset.Labels);
idx = randperm(numTrainImages, 4);
figure
for i = 1:4
subplot(2,2,i)
I = readimage(trainDataset, idx(i));
imshow(I)
end
```
2. 特征提取
```matlab
% 提取训练集的图像特征
bag = bagOfFeatures(trainDataset);
% 显示部分特征
figure
bar(bag.VocabularyCounts)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')
```
3. 训练分类器
```matlab
% 提取训练集的特征向量和标签
trainFeatures = encode(bag, trainDataset);
trainLabels = trainDataset.Labels;
% 训练SVM分类器
classifier = fitcecoc(trainFeatures, trainLabels, 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');
```
4. 测试和评估
```matlab
% 提取测试集的特征向量和标签
testFeatures = encode(bag, testDataset);
testLabels = testDataset.Labels;
% 使用分类器对测试集进行分类
predictedLabels = predict(classifier, testFeatures);
% 计算分类器的准确率、召回率、F1值等指标
accuracy = mean(predictedLabels == testLabels);
confMat = confusionmat(testLabels, predictedLabels);
precision = diag(confMat)./sum(confMat,2);
recall = diag(confMat)./sum(confMat,1)';
f1 = 2*(precision.*recall)./(precision+recall);
meanF1 = mean(f1);
```
这是一个简单的水果识别示例,实际应用中可能需要更复杂的特征提取方法和分类器。
阅读全文