area_intersection = torch.histc(intersection.float().cpu(), bins=K, min=0, max=K - 1)解释代码
时间: 2024-05-25 08:18:58 浏览: 208
该代码的作用是计算两个区域的交集,并将结果的直方图统计出来。
具体来说,该代码中的参数含义如下:
- `intersection`:指定的两个区域的交集,类型为 `torch.Tensor`。
- `bins`:直方图的箱数,即将数据分成的区间的个数。
- `min`:数据的最小值,超过该值的数据会被归入第一个区间。
- `max`:数据的最大值,超过该值的数据会被归入最后一个区间。
`torch.histc()` 函数会将数据按照给定的箱数和区间范围分成若干个区间,并统计每个区间内数据出现的次数,最后返回一个包含各个区间中数据出现次数的张量,即直方图。在这里,将交集转换为 `float` 类型并在 CPU 上执行直方图统计。返回的结果 `area_intersection` 就是两个区域的交集直方图。
相关问题
逐行注释: lt = torch.max(box_a[:, None, :2], box_b[:, :2]) rb = torch.min(box_a[:, None, 2:], box_b[:, 2:]) wh = (rb - lt).clamp(min=0) inter = wh[:, :, 0] * wh[:, :, 1] area_a = torch.prod(box_a[:, 2:] - box_a[:, :2], 1) area_b = torch.prod(box_b[:, 2:] - box_b[:, :2], 1) return inter / (area_a[:, None] + area_b - inter)
这是一个计算两个矩形框之间的 IoU(Intersection over Union,交并比)的函数。下面是逐行注释:
```python
lt = torch.max(box_a[:, None, :2], box_b[:, :2])
# 得到两个矩形框左上角坐标的最大值,即交集的左上角坐标
rb = torch.min(box_a[:, None, 2:], box_b[:, 2:])
# 得到两个矩形框右下角坐标的最小值,即交集的右下角坐标
wh = (rb - lt).clamp(min=0)
# 计算交集的宽高,如果宽高小于0则置为0
inter = wh[:, :, 0] * wh[:, :, 1]
# 计算交集面积
area_a = torch.prod(box_a[:, 2:] - box_a[:, :2], 1)
# 计算第一个矩形框的面积
area_b = torch.prod(box_b[:, 2:] - box_b[:, :2], 1)
# 计算第二个矩形框的面积
return inter / (area_a[:, None] + area_b - inter)
# 计算并集面积并返回交并比
```
import plotly.graph_objs as go import numpy as np from scipy import optimize def f1(x, y, z): return (x**2 + y**2 - 1) * (x**2 + z**2 - 1) * (y**2 + z**2 - 1) - 1 def f2(x, y, z): return x**3/3-y**2/2-z def intersection(f1, f2): def equations(p): x, y, z = p return (f1(x, y, z), f2(x, y, z)) x_min, x_max = -1, 1 y_min, y_max = -1, 1 z_min, z_max = -1, 1 x, y, z = optimize.fsolve(equations, (0, 0, 0)) if x_min <= x <= x_max and y_min <= y <= y_max and z_min <= z <= z_max: return x, y, z else: return None x = np.linspace(-1, 1, 50) y = np.linspace(-1, 1, 50) z = np.linspace(-1, 1, 50) X, Y, Z = np.meshgrid(x, y, z) Z1 = f1(X, Y, Z) Z2 = f2(X, Y, Z) fig = go.Figure() fig.add_trace(go.Isosurface(x=X.flatten(), y=Y.flatten(), z=Z.flatten(), value=Z1.flatten(), isomin=-1, isomax=1, surface_count=2, colorscale='Viridis', opacity=0.7)) fig.add_trace(go.Isosurface(x=X.flatten(), y=Y.flatten(), z=Z.flatten(), value=Z2.flatten(), isomin=-1, isomax=1, surface_count=2, colorscale='RdBu', opacity=0.7)) intersection_point = intersection(f1, f2) if intersection_point: fig.add_trace(go.Scatter3d(x=[intersection_point[0]], y=[intersection_point[1]], z=[intersection_point[2]], mode='markers', marker=dict(size=10, color='red'))) fig.show()这段代码没有输出,请帮我修改一下
这段代码的最后一行应该是调用 `intersection_point` 的情况下输出 `fig`,而不是直接调用 `fig.show()`。因此,你可以修改代码如下:
```python
import plotly.graph_objs as go
import numpy as np
from scipy import optimize
def f1(x, y, z):
return (x**2 + y**2 - 1) * (x**2 + z**2 - 1) * (y**2 + z**2 - 1) - 1
def f2(x, y, z):
return x**3/3-y**2/2-z
def intersection(f1, f2):
def equations(p):
x, y, z = p
return (f1(x, y, z), f2(x, y, z))
x_min, x_max = -1, 1
y_min, y_max = -1, 1
z_min, z_max = -1, 1
x, y, z = optimize.fsolve(equations, (0, 0, 0))
if x_min <= x <= x_max and y_min <= y <= y_max and z_min <= z <= z_max:
return x, y, z
else:
return None
x = np.linspace(-1, 1, 50)
y = np.linspace(-1, 1, 50)
z = np.linspace(-1, 1, 50)
X, Y, Z = np.meshgrid(x, y, z)
Z1 = f1(X, Y, Z)
Z2 = f2(X, Y, Z)
fig = go.Figure()
fig.add_trace(go.Isosurface(x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
value=Z1.flatten(), isomin=-1, isomax=1, surface_count=2,
colorscale='Viridis', opacity=0.7))
fig.add_trace(go.Isosurface(x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
value=Z2.flatten(), isomin=-1, isomax=1, surface_count=2,
colorscale='RdBu', opacity=0.7))
intersection_point = intersection(f1, f2)
if intersection_point:
fig.add_trace(go.Scatter3d(x=[intersection_point[0]],
y=[intersection_point[1]], z=[intersection_point[2]],
mode='markers', marker=dict(size=10, color='red')))
fig.show()
else:
print("No intersection point found.")
```
这样,当存在交点时,代码将输出图形;否则,将输出 "No intersection point found."。
阅读全文