accuracy = sum(intersection_meter.val) / (sum(label_histc_meter.val) + 1e-10)解释代码

时间: 2024-05-25 16:19:00 浏览: 9
这段代码是计算模型的准确率的,具体解释如下: - `intersection_meter.val` 表示模型预测的结果与标签的交集的数量,即预测正确的数量。 - `label_histc_meter.val` 表示标签的数量直方图,即每个类别的数量。 - `sum(label_histc_meter.val)` 表示标签总数,即样本总数。 - `1e-10` 是为了避免分母为0的情况。 - 最终的结果是准确率,即预测正确的数量除以样本总数。
相关问题

设置训练和验证集路径 train_vol_path = "data/train/trainvol" train_seg_path = "data/train/trainseg" val_vol_path = "data/val/valvol" val_seg_path = "data/val/valseg" # 定义数据生成器 train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) # 加载训练和验证数据 train_vol = train_datagen.flow_from_directory(train_vol_path, target_size=(256, 256), batch_size=32, class_mode=None) train_seg = train_datagen.flow_from_directory(train_seg_path, target_size=(256, 256), batch_size=32, class_mode=None) val_vol = val_datagen.flow_from_directory(val_vol_path, target_size=(256, 256), batch_size=32, class_mode=None) val_seg = val_datagen.flow_from_directory(val_seg_path, target_size=(256, 256), batch_size=32, class_mode=None) # 合并训练和验证数据 train_generator = zip(train_vol, train_seg) val_generator = zip(val_vol, val_seg) # 定义UNet模型 model = unet() # 编译模型 model.compile(optimizer=Adam(learning_rate=1e-4), loss='binary_crossentropy', metrics=['accuracy'])报错'NoneType' object has no attribute 'compile'怎么改代码

可以尝试将 `class_mode` 参数设置为 `'binary'` 或者其他适合数据集的值,来解决这个问题。修改后的代码如下所示: ``` # 设置训练和验证集路径 train_vol_path = "data/train/trainvol" train_seg_path = "data/train/trainseg" val_vol_path = "data/val/valvol" val_seg_path = "data/val/valseg" # 定义数据生成器 train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) # 加载训练和验证数据 train_vol = train_datagen.flow_from_directory(train_vol_path, target_size=(256, 256), batch_size=32, class_mode='binary') train_seg = train_datagen.flow_from_directory(train_seg_path, target_size=(256, 256), batch_size=32, class_mode='binary') val_vol = val_datagen.flow_from_directory(val_vol_path, target_size=(256, 256), batch_size=32, class_mode='binary') val_seg = val_datagen.flow_from_directory(val_seg_path, target_size=(256, 256), batch_size=32, class_mode='binary') # 合并训练和验证数据 train_generator = zip(train_vol, train_seg) val_generator = zip(val_vol, val_seg) # 定义UNet模型 model = unet() # 编译模型 model.compile(optimizer=Adam(learning_rate=1e-4), loss='binary_crossentropy', metrics=['accuracy']) ```

acc += (predict_y == val_labels.to(device)).sum().item()

这段代码是用来计算分类模型的精确度(accuracy)的。其中,predict_y是模型对测试数据的预测结果,val_labels是测试数据的真实标签,device是代码运行的设备(如CPU或GPU)。对predict_y和val_labels进行比较,得到一个布尔类型的tensor,其中相同的位置为True,不同的位置为False。将True的数量相加,即为模型正确分类的数量,使用item()方法将其转化为Python中的整数类型。最后将正确分类的数量加到acc变量中。在计算完所有测试数据的精确度后,将acc除以测试数据总数,即可得到模型的平均精确度。

相关推荐

from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.optimizers import Adam import matplotlib.pyplot as plt import shutil import os # 加载数据集 train_dir = 'path/to/train' val_dir = ''path/to /validation' test_dir = ''path/to /test' batch_size = 20 epochs = 20 img_height, img_width = 150, 150 train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) val_generator = val_datagen.flow_from_directory( val_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) test_generator = val_datagen.flow_from_directory( test_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dropout(0.5), Dense(512, activation='relu'), Dense(10, activation='softmax') ]) # 编译模型并指定优化器、损失函数和评估指标 model.compile( optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=val_generator.samples // batch_size ) plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.legend() plt.show()优化这段代码的验证集的准确率,并加上使用混淆矩阵分析该代码结果的代码

60/60 [==============================] - 19s 89ms/step - loss: 229.5776 - accuracy: 0.7818 - val_loss: 75.8205 - val_accuracy: 0.2848 Epoch 2/50 60/60 [==============================] - 5s 78ms/step - loss: 59.5195 - accuracy: 0.8323 - val_loss: 52.4355 - val_accuracy: 0.7152 Epoch 3/50 60/60 [==============================] - 5s 77ms/step - loss: 47.9256 - accuracy: 0.8453 - val_loss: 47.9466 - val_accuracy: 0.2848 Epoch 4/50 60/60 [==============================] - 5s 77ms/step - loss: 41.7355 - accuracy: 0.8521 - val_loss: 37.7279 - val_accuracy: 0.2848 Epoch 5/50 60/60 [==============================] - 5s 76ms/step - loss: 40.1783 - accuracy: 0.8505 - val_loss: 40.2293 - val_accuracy: 0.7152 Epoch 6/50 60/60 [==============================] - 5s 76ms/step - loss: 37.8785 - accuracy: 0.8781 - val_loss: 38.5298 - val_accuracy: 0.2848 Epoch 7/50 60/60 [==============================] - 5s 77ms/step - loss: 37.1490 - accuracy: 0.8786 - val_loss: 37.1918 - val_accuracy: 0.2848 Epoch 8/50 60/60 [==============================] - 5s 78ms/step - loss: 34.6709 - accuracy: 0.9156 - val_loss: 34.0621 - val_accuracy: 0.2765 Epoch 9/50 60/60 [==============================] - 5s 76ms/step - loss: 35.7891 - accuracy: 0.8849 - val_loss: 37.8741 - val_accuracy: 0.7152 Epoch 10/50 60/60 [==============================] - 5s 76ms/step - loss: 34.5359 - accuracy: 0.9141 - val_loss: 35.2664 - val_accuracy: 0.7152 Epoch 11/50 60/60 [==============================] - 5s 76ms/step - loss: 34.6172 - accuracy: 0.9016 - val_loss: 34.5135 - val_accuracy: 0.6258 Epoch 12/50 60/60 [==============================] - 5s 76ms/step - loss: 34.2331 - accuracy: 0.9083 - val_loss: 34.0945 - val_accuracy: 0.9168 Epoch 13/50 60/60 [==============================] - 5s 79ms/step - loss: 37.4175 - accuracy: 0.9000 - val_loss: 37.7885 - val_accuracy: 0.7152 16/16 - 0s - loss: 34.0621 - accuracy: 0.2765 - 307ms/epoch - 19ms/step Test accuracy: 0.27650728821754456

详细分析一下python代码:import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True, min_lr=0) loss_hist, acc_hist = [], [] loss_hist_val, acc_hist_val = [], [] for epoch in range(140): running_loss = 0.0 correct = 0 for data in train_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) optimizer.zero_grad() outputs = net(batch) loss = criterion(outputs, labels) loss.backward() optimizer.step() # compute training statistics _, predicted = torch.max(outputs, 1) correct += (predicted == labels).sum().item() running_loss += loss.item() avg_loss = running_loss / len(train_set) avg_acc = correct / len(train_set) loss_hist.append(avg_loss) acc_hist.append(avg_acc) # validation statistics net.eval() with torch.no_grad(): loss_val = 0.0 correct_val = 0 for data in val_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) outputs = net(batch) loss = criterion(outputs, labels) _, predicted = torch.max(outputs, 1) correct_val += (predicted == labels).sum().item() loss_val += loss.item() avg_loss_val = loss_val / len(val_set) avg_acc_val = correct_val / len(val_set) loss_hist_val.append(avg_loss_val) acc_hist_val.append(avg_acc_val) net.train() scheduler.step(avg_loss_val) print('[epoch %d] loss: %.5f accuracy: %.4f val loss: %.5f val accuracy: %.4f' % (epoch + 1, avg_loss, avg_acc, avg_loss_val, avg_acc_val))

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0.0000e+00`的情况。这通常意味着模型在验证集上的分类精度为零,即模型无法正确预测任何验证样本的类别。 问题描述: ...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

model.save_weights('./model.h5') ``` 2. 重新启动脚本并加载模型: ```python model.load_weights('./model.h5') ``` 3. 报错: ```python ValueError: You are trying to load a weight file containing...
recommend-type

教育培训.exe

微信小程序源码是指开发者编写的用于创建微信小程序的代码文件,可以是包含小程序界面设计、逻辑处理、数据交互等方面的代码。通过编写源码,开发者可以实现自己想要的小程序功能和界面。 通常,微信小程序的源码包括以下几个主要部分: .json 文件:用于配置小程序的全局配置或页面配置,包括页面路径、页面标题栏样式、底部 tabBar 配置等。 .wxml 文件:用于编写小程序页面的结构,类似于HTML,用于描述页面的组件和布局。 .wxss 文件:用于编写小程序页面的样式表,类似于CSS,用于定义页面的样式和布局。 .js 文件:用于编写小程序页面的逻辑处理和交互,通过调用小程序 API 实现页面的数据处理、事件处理等功能。 开发者可以通过编辑这些源码文件来创建个性化的微信小程序,实现各种功能,例如轮播图、下拉刷新、表单提交等。在开发完成后,通过微信开发者工具将源码上传并发布到微信小程序平台,用户便可以通过微信扫描小程序码或搜索使用这个小程序。
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】安装MySQL:从下载到配置的完整指南

![python数据库编程合集](https://opengraph.githubassets.com/f5c38590c64cc0ea56ef235eff4fb5d5675e3c699a36ce388d1ffc280bd77681/mongodb/mongo-python-driver) # 1. MySQL数据库简介 MySQL是一种开源的关系型数据库管理系统(RDBMS),因其高性能、可扩展性和易用性而闻名。它广泛应用于各种规模的应用程序,从小型网站到大型企业系统。 MySQL使用结构化查询语言(SQL)来管理数据。SQL是一种标准化语言,允许用户通过简单的命令创建、读取、更新和删除