accuracy = float((pred_y == test_label.data.numpy()).astype(int).sum()) / float(test_label.size(0))
时间: 2024-01-21 21:03:50 浏览: 175
这段代码是用来计算模型的预测准确率的。其中,pred_y是模型的预测结果,test_label是测试集的真实标签。首先,通过(pred_y == test_label.data.numpy())可以得到一个布尔类型的数组,其中正确预测的位置为True,错误预测的位置为False。接着,通过.astype(int)将布尔类型的数组转换为0/1的整数数组,方便后续的求和操作。最后,通过.sum()求和得到正确预测的数量,除以测试集大小test_label.size(0)即可得到模型的准确率。最终,将结果转换为float类型赋值给accuracy变量。
相关问题
请指出下列python代码的错误并改正。from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression kf = KFold(n_splits=3) accuracy_rate=[] cm=[] for train_index, test_index in kf.split(data): dataX_train = x[train_index] dataX_test=x[test_index] dataY_train = y[train_index] dataY_test=y[test_index] model = LogisticRegression() model.fit(dataX_train, dataY_train.astype('int')) # print(model.predict(dataX_test)) # print(dataY_test.tolist()) accuracy_rate.append(sum(model.predict(dataX_test)==dataY_test.tolist())/len(dataY_test)) cm.append(confusion_matrix(y_true=dataY_test, y_pred=model.predict(dataX_test)).T)
这段代码缺少了要导入的库和相关数据。需要根据具体情况添加和修改代码。另外,在定义 model 时需要加上缩进。
修改后的代码如下:
```
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
data = np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
x = data[:,0:1]
y = data[:,1]
kf = KFold(n_splits=3)
accuracy_rate=[]
cm=[]
for train_index, test_index in kf.split(data):
dataX_train = x[train_index]
dataX_test = x[test_index]
dataY_train = y[train_index]
dataY_test = y[test_index]
model = LogisticRegression()
model.fit(dataX_train, dataY_train.astype('int'))
```
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 加载数据 data = pd.read_csv('heart_2020_cleaned.csv') # 特征工程 X = data.drop('HeartDisease', axis=1) y = data['HeartDisease'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 模型训练 model = DecisionTreeClassifier(max_depth=3) model.fit(X_train, y_train) # 模型评估 y_pred = model.predict(X_test) acc = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print('Accuracy:', acc) print('Precision:', precision) print('Recall:', recall) print('F1:', f1)转换数值类型
上述代码中似乎没有出现需要转换数值类型的情况,如果您需要将某个特征的数据类型从字符串转换为数值型,可以使用以下代码:
```python
data['SomeFeature'] = data['SomeFeature'].astype(float)
```
其中,`SomeFeature`表示需要转换数据类型的特征名,`float`表示需要转换为的数据类型。可以根据实际情况选择需要转换为的数据类型。
阅读全文