逐句解释 random.shuffle(data) data = np.array(data).astype('float32') len_train = (int)(data.shape[0] * 0.8) data_train = data[:len_train] data_pred = data[len_train:] svm = SVM('./chars2Chinese.svm') # svm.train(data_train[:, :-1], data_train[:, -1].ravel().astype('int32')) pred = svm.predict(data[:, :-1]) print('accuracy: ', np.sum(pred == data[:, -1]) / pred.ravel().shape[0])
时间: 2023-06-17 21:04:24 浏览: 113
LRC.rar_LRC_LrcCon.e_LrcCon.exe_txt转换lrc_歌词转换
- `random.shuffle(data)`: 这行代码将列表 `data` 中的元素随机打乱,以便在后面的处理中得到更好的训练效果。
- `data = np.array(data).astype('float32')`: 这行代码将列表 `data` 转换为 Numpy 的数组,并将数据类型转换为浮点型。
- `len_train = (int)(data.shape[0] * 0.8)`: 这行代码计算出训练集的长度。`data.shape[0]` 表示数据集的行数,即样本数量。`data.shape[0] * 0.8` 表示将样本数量的 80% 作为训练集的数量,`int()` 将结果转换为整数。
- `data_train = data[:len_train]`: 这行代码将前 `len_train` 个样本作为训练集。
- `data_pred = data[len_train:]`: 这行代码将剩余的样本作为测试集。
- `svm = SVM('./chars2Chinese.svm')`: 这行代码创建一个 SVM 模型对象。`'./chars2Chinese.svm'` 是模型的保存路径。
- `pred = svm.predict(data[:, :-1])`: 这行代码用训练好的 SVM 模型对整个数据集 `data` 进行预测,`data[:, :-1]` 表示除最后一列外的所有列,即样本的输入特征。
- `print('accuracy: ', np.sum(pred == data[:, -1]) / pred.ravel().shape[0])`: 这行代码计算模型的准确率,`np.sum(pred == data[:, -1])` 表示预测正确的样本数量,`pred.ravel().shape[0]` 表示样本总数。
阅读全文