train_data_path = os.path.join(data_dir, 'train') valid_data_path = os.path.join(data_dir, 'val') train_low_data_names = glob(train_data_path + '/low/*.png') # glob(data_dir + '/train/low/*.png') train_low_data_names.sort() train_high_data_names = glob(train_data_path + '/high/*.png') # glob(data_dir + '/our485/high/*.png') train_high_data_names.sort() eval_low_data_names = glob(valid_data_path + '/low/*.*') eval_low_data_names.sort() eval_high_data_names = glob(valid_data_path + '/high/*.*') eval_high_data_names.sort() assert len(train_low_data_names) == len(train_high_data_names) assert len(train_low_data_names) != 0逐句解释一下这段代码
时间: 2023-10-15 22:07:04 浏览: 136
train_data-数据集
5星 · 资源好评率100%
这段代码的作用是加载训练和验证数据的文件路径,并对文件路径进行排序。然后,它使用断言语句来确保训练低分辨率图像数据的列表 `train_low_data_names` 和训练高分辨率图像数据的列表 `train_high_data_names` 长度相等且不为零。
逐句解释这段代码:
1. `train_data_path = os.path.join(data_dir, 'train')`:将训练数据文件夹路径与 'train' 目录拼接,得到训练数据集的完整路径。
2. `valid_data_path = os.path.join(data_dir, 'val')`:将验证数据文件夹路径与 'val' 目录拼接,得到验证数据集的完整路径。
3. `train_low_data_names = glob(train_data_path + '/low/*.png')`:使用 `glob` 函数查找训练低分辨率图像数据文件夹中所有以 '.png' 扩展名结尾的文件,并将它们的路径存储在 `train_low_data_names` 列表中。
4. `train_low_data_names.sort()`:对训练低分辨率图像数据的列表进行排序,以确保它们按照字母顺序排列。
5. `train_high_data_names = glob(train_data_path + '/high/*.png')`:使用 `glob` 函数查找训练高分辨率图像数据文件夹中所有以 '.png' 扩展名结尾的文件,并将它们的路径存储在 `train_high_data_names` 列表中。
6. `train_high_data_names.sort()`:对训练高分辨率图像数据的列表进行排序,以确保它们按照字母顺序排列。
7. `eval_low_data_names = glob(valid_data_path + '/low/*.*')`:使用 `glob` 函数查找验证低分辨率图像数据文件夹中的所有文件,并将它们的路径存储在 `eval_low_data_names` 列表中。
8. `eval_low_data_names.sort()`:对验证低分辨率图像数据的列表进行排序,以确保它们按照字母顺序排列。
9. `eval_high_data_names = glob(valid_data_path + '/high/*.*')`:使用 `glob` 函数查找验证高分辨率图像数据文件夹中的所有文件,并将它们的路径存储在 `eval_high_data_names` 列表中。
10. `eval_high_data_names.sort()`:对验证高分辨率图像数据的列表进行排序,以确保它们按照字母顺序排列。
11. `assert len(train_low_data_names) == len(train_high_data_names)`:断言训练低分辨率图像数据的列表 `train_low_data_names` 和训练高分辨率图像数据的列表 `train_high_data_names` 的长度相等。
12. `assert len(train_low_data_names) != 0`:断言训练低分辨率图像数据的列表 `train_low_data_names` 的长度不为零。
这些断言语句用于确保数据加载的正确性和一致性。如果断言条件不满足,将会引发 `AssertionError` 异常。
阅读全文