逐句解释error_factor=np.random.rand(2**cluster_num, 1) * 2*error + 1-error psi_temp=psig_HA_gBg*error_factor psig_HA_gBg=psi_temp*1.0 / np.sqrt(np.dot(psi_temp.conj().T, psi_temp)[0][0])
时间: 2023-04-07 13:01:59 浏览: 220
这是一段 Python 代码,其中使用了 numpy 库中的随机数生成函数 np.random.rand(),生成了一个大小为 2 的 cluster_num 次方乘以 1 的矩阵 error_factor,并将其乘以 2*error-1,得到一个大小相同的矩阵。接着,使用 psig_HA_gBg 与 error_factor 相乘,得到一个新的矩阵 psi_temp。最后,将 psi_temp 除以其本身的模长,得到一个单位向量 psig_HA_gBg。
相关问题
逐句解释一下import numpy as npclass Perceptron: def __init__(self, num_classes, input_size, lr=0.1, epochs=1000): self.num_classes = num_classes self.input_size = input_size self.lr = lr self.epochs = epochs self.weights = np.zeros((num_classes, input_size)) self.biases = np.zeros(num_classes) def train(self, X, y): for epoch in range(self.epochs): for i in range(X.shape[0]): x = X[i] target = y[i] output = self.predict(x) if output != target: self.weights[target] += self.lr * x self.biases[target] += self.lr self.weights[output] -= self.lr * x self.biases[output] -= self.lr def predict(self, x): scores = np.dot(self.weights, x) + self.biases return np.argmax(scores)if __name__ == '__main__': X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]]) y = np.array([0, 0, 1, 1]) num_classes = 2 input_size = 2 perceptron = Perceptron(num_classes, input_size) perceptron.train(X, y) print(perceptron.predict(np.array([1, 2])))
1. `import numpy as np`:导入NumPy库并将其命名为`np`,使得在代码中使用NumPy函数和数组时可以更方便地调用。
2. `class Perceptron:`:定义一个名为`Perceptron`的类。
3. `def __init__(self, num_classes, input_size, lr=0.1, epochs=1000):`:定义一个名为`__init__`的方法,用于初始化`Perceptron`类的实例。该方法包含四个参数:`num_classes`表示分类数目,`input_size`表示每个输入样本的特征数,`lr`表示学习率(默认值为0.1),`epochs`表示训练次数(默认值为1000)。
4. `self.num_classes = num_classes`:将传入的`num_classes`参数赋值给`Perceptron`类的实例变量`num_classes`。
5. `self.input_size = input_size`:将传入的`input_size`参数赋值给`Perceptron`类的实例变量`input_size`。
6. `self.lr = lr`:将传入的`lr`参数赋值给`Perceptron`类的实例变量`lr`。
7. `self.epochs = epochs`:将传入的`epochs`参数赋值给`Perceptron`类的实例变量`epochs`。
8. `self.weights = np.zeros((num_classes, input_size))`:将一个大小为`(num_classes, input_size)`的全零数组赋值给`Perceptron`类的实例变量`weights`,用于存储神经元的权重。
9. `self.biases = np.zeros(num_classes)`:将一个大小为`num_classes`的全零数组赋值给`Perceptron`类的实例变量`biases`,用于存储神经元的偏置。
10. `def train(self, X, y):`:定义一个名为`train`的方法,用于训练神经元模型。该方法包含两个参数:`X`表示输入样本的特征矩阵,`y`表示输入样本的标签向量。
11. `for epoch in range(self.epochs):`:使用`for`循环,遍历所有训练次数。
12. `for i in range(X.shape[0]):`:使用`for`循环,遍历所有输入样本。
13. `x = X[i]`:将当前输入样本的特征向量赋值给变量`x`。
14. `target = y[i]`:将当前输入样本的标签赋值给变量`target`。
15. `output = self.predict(x)`:调用`predict`方法,根据当前输入样本的特征向量预测输出标签,并将结果赋值给变量`output`。
16. `if output != target:`:如果预测输出标签与实际标签不同:
17. `self.weights[target] += self.lr * x`:将目标类别的权重向量加上当前输入样本的特征向量与学习率的乘积。
18. `self.biases[target] += self.lr`:将目标类别的偏置加上学习率。
19. `self.weights[output] -= self.lr * x`:将输出类别的权重向量减去当前输入样本的特征向量与学习率的乘积。
20. `self.biases[output] -= self.lr`:将输出类别的偏置减去学习率。
21. `def predict(self, x):`:定义一个名为`predict`的方法,用于根据输入样本的特征向量预测输出标签。该方法包含一个参数`x`,表示输入样本的特征向量。
22. `scores = np.dot(self.weights, x) + self.biases`:将权重向量与输入样本的特征向量做点积,再加上偏置向量,得到一个分数向量。该分数向量包含每个类别的分数。
23. `return np.argmax(scores)`:返回分数向量中分数最高的类别的索引,即为预测输出标签。
24. `if __name__ == '__main__':`:检查当前模块是否为主模块。
25. `X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]])`:定义一个大小为`(4, 2)`的NumPy数组,包含四个输入样本的特征向量。
26. `y = np.array([0, 0, 1, 1])`:定义一个大小为`(4,)`的NumPy数组,包含四个输入样本的标签。
27. `num_classes = 2`:定义变量`num_classes`,表示分类数目为2。
28. `input_size = 2`:定义变量`input_size`,表示每个输入样本的特征数为2。
29. `perceptron = Perceptron(num_classes, input_size)`:创建一个`Perceptron`类的实例`perceptron`,传入分类数目和每个输入样本的特征数。
30. `perceptron.train(X, y)`:调用`train`方法,训练神经元模型。
31. `print(perceptron.predict(np.array([1, 2])))`:创建一个大小为`(2,)`的NumPy数组作为输入样本的特征向量,调用`predict`方法,预测输出标签,并将结果打印出来。
逐句注释 # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 x_train = np.array([ir_img]) y_train = np.array([vis_img]) model.fit(x_train, y_train, epochs=10) # 使用模型进行配准 ir_img = np.array([ir_img]) vis_img_pred = model.predict(ir_img)[0] # 显示配准结果 cv2.imshow('IR Image', ir_img[0]) cv2.imshow('Registered Visible Image', vis_img_pred) cv2.waitKey(0) cv2.destroyAllWindows()
# 编译模型
# 使用 adam 优化器和均方误差作为损失函数编译模型
model.compile(optimizer='adam', loss='mse')
# 训练模型
# 将红外图像 ir_img 转换成 numpy 数组 x_train,可视光图像 vis_img 转换成 numpy 数组 y_train
x_train = np.array([ir_img])
y_train = np.array([vis_img])
# 使用训练集 x_train 和 y_train 进行 10 次迭代的训练
model.fit(x_train, y_train, epochs=10)
# 使用模型进行配准
# 将红外图像 ir_img 转换成 numpy 数组 ir_img,然后使用模型进行配准,得到可视光图像的预测值 vis_img_pred
ir_img = np.array([ir_img])
vis_img_pred = model.predict(ir_img)[0]
# 显示配准结果
# 显示原始红外图像 ir_img[0] 和配准后的可视光图像 vis_img_pred
cv2.imshow('IR Image', ir_img[0])
cv2.imshow('Registered Visible Image', vis_img_pred)
cv2.waitKey(0)
cv2.destroyAllWindows()
阅读全文