class Net(nn.Module): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) # 只有在训练模型时才使用dropout if self.training == True: # 在第一个全连接层之后添加一个dropout层 H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: # 在第二个全连接层之后添加一个dropout层 H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out解释一下各行代码的用法和意义
时间: 2023-11-12 21:08:25 浏览: 121
这是一个使用PyTorch框架定义的神经网络模型,包含三个全连接层和一个ReLU激活函数。下面解释每行代码的用法和意义:
1. 定义一个名为Net的类,继承自nn.Module类。
2. 类的构造方法,定义了输入层、输出层、两层隐藏层的神经元数量以及是否训练的标志。
3. 调用父类的构造方法,初始化神经网络。
4. 定义一个实例变量,表示输入数据的特征数量。
5. 定义一个实例变量,表示当前模型是否处于训练状态。
6. 定义第一个全连接层,输入为输入特征数量,输出为第一个隐藏层神经元数量。
7. 定义第二个全连接层,输入为第一个隐藏层神经元数量,输出为第二个隐藏层神经元数量。
8. 定义输出层,输入为第二个隐藏层神经元数量,输出为输出特征数量。
9. 定义ReLU激活函数。
10. 实现前向传播的过程,接受输入数据X,首先将其reshape为(batch_size, num_inputs)的形状,其中batch_size表示批量数据的数量。
11. 在第一个全连接层后应用ReLU激活函数,得到第一个隐藏层的输出H1。
12. 如果当前模型处于训练状态,则在第一个全连接层后添加一个dropout层,丢弃一部分神经元的输出,以防止过拟合。
13. 在第二个全连接层后应用ReLU激活函数,得到第二个隐藏层的输出H2。
14. 如果当前模型处于训练状态,则在第二个全连接层后添加一个dropout层,丢弃一部分神经元的输出,以防止过拟合。
15. 将第二个隐藏层的输出作为输入,通过输出层得到模型的预测输出。
16. 返回模型的预测输出。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class BearingFaultDetectionModel(nn.Module): def __init__(self): super(BearingFaultDetectionModel, self).__init__() self.attention = nn.MultiheadAttention(embed_dim=10, num_heads=1) # 注意力层 self.dense = nn.Linear(10, 1) # 输出层,预测轴承是否存在故障 def forward(self, inputs): attention_outputs, _ = self.attention(inputs.permute(1, 0, 2), inputs.permute(1, 0, 2), inputs.permute(1, 0, 2)) # 计算注意力权重 attention_outputs = attention_outputs.permute(1, 0, 2) weighted_inputs = attention_outputs * inputs # 使用注意力权重进行加权 output = self.dense(weighted_inputs) # 输出层 return output
这是一个用于轴承故障检测的模型。它包含一个注意力层和一个输出层。
在`__init__`方法中,我们首先调用`super()`来继承父类`nn.Module`的属性和方法。然后,我们定义了一个`nn.MultiheadAttention`层作为注意力层,其中`embed_dim=10`表示输入特征的维度为10,`num_heads=1`表示只使用一个注意力头。接下来,我们定义了一个线性层`nn.Linear(10, 1)`作为输出层,用于预测轴承是否存在故障。
在`forward`方法中,我们首先通过调用注意力层`self.attention`计算输入特征的注意力权重。然后,对注意力权重和输入特征进行维度转换,并将它们相乘得到加权的输入特征`weighted_inputs`。最后,将加权的输入特征传递给输出层`self.dense`进行预测,得到输出结果。
这个模型的目标是通过引入注意力机制,对轴承故障进行检测并进行预测。注意力机制可以帮助模型更好地关注轴承特征中的重要信息,并根据注意力权重进行加权处理,进而提高检测和预测的准确性。
阅读全文
相关推荐

















