分析moveit配置文件中的 planning_time_limit: 10.0 max_iterations: 200 max_iterations_after_collision_free: 5 smoothness_cost_weight: 0.1 obstacle_cost_weight: 1.0 learning_rate: 0.01 smoothness_cost_velocity: 0.0 smoothness_cost_acceleration: 1.0 smoothness_cost_jerk: 0.0 ridge_factor: 0.01 use_pseudo_inverse: false pseudo_inverse_ridge_factor: 1e-4 joint_update_limit: 0.1 collision_clearence: 0.2 collision_threshold: 0.07 use_stochastic_descent: true enable_failure_recovery: true max_recovery_attempts: 5
时间: 2023-06-25 19:07:00 浏览: 195
这些是MoveIt配置文件中的参数,用于控制规划器的行为和性能。以下是各个参数的作用解释:
- planning_time_limit: 规划器运行的最大时间限制,单位为秒。
- max_iterations: 规划器允许的最大迭代次数。
- max_iterations_after_collision_free: 当规划器发现一条可行的路径后,它将继续进行一些额外的迭代以进一步优化路径。此参数控制迭代的数量。
- smoothness_cost_weight: 平滑度成本的权重。该成本用于惩罚不平滑的路径。
- obstacle_cost_weight: 障碍物成本的权重。该成本用于惩罚与障碍物的碰撞。
- learning_rate: 用于求解逆运动学问题的学习率。
- smoothness_cost_velocity: 平滑度成本中速度项的权重。
- smoothness_cost_acceleration: 平滑度成本中加速度项的权重。
- smoothness_cost_jerk: 平滑度成本中急加急减项的权重。
- ridge_factor: 正则化项的系数,用于避免过度拟合。
- use_pseudo_inverse: 是否使用伪逆求解逆运动学问题。
- pseudo_inverse_ridge_factor: 伪逆求解时的正则化项系数。
- joint_update_limit: 关节变化的最大限制。
- collision_clearence: 用于避免碰撞的安全距离。
- collision_threshold: 碰撞检测的阈值。如果两个物体之间的距离小于这个值,就认为它们发生了碰撞。
- use_stochastic_descent: 是否使用随机梯度下降算法进行优化。
- enable_failure_recovery: 是否启用规划失败时的恢复机制。
- max_recovery_attempts: 规划失败时的最大恢复尝试次数。
阅读全文