如何将pb文件转换为HDF5 格式 完整代码
时间: 2024-05-13 13:16:53 浏览: 75
keras_to_tensorflow:将经过训练的keras模型转换为推断张量流模型的通用代码
以下是将pb文件转换为HDF5格式的完整代码:
```python
import tensorflow as tf
import keras.backend as K
from keras.models import Sequential
def pb_to_h5(pb_file_path, h5_file_path):
with tf.keras.backend.get_session() as sess:
# Load the protobuf graph from the pb file
with tf.gfile.GFile(pb_file_path, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Import the graph_def into a new Graph and return it
tf.import_graph_def(graph_def, name="")
# Define a Keras model
model = Sequential()
model.add(tf.keras.layers.Lambda(lambda x: x, input_shape=(None,), dtype='string'))
# Traverse the TF graph and add variables to the Keras model
for node in graph_def.node:
if node.op == 'Placeholder':
continue
if node.op == 'Const':
tensor = tf.import_graph_def(graph_def,
input_map={node.name: tf.zeros([1, 1])},
return_elements=[node.name + ":0"])
K.set_value(model.weights[-1], tensor[0])
else:
try:
layer = tf.keras.layers.deserialize({'class_name': node.op, 'config': {}},
custom_objects={})
layer.build([None] + [i.shape for i in layer.inputs])
layer.set_weights([K.get_value(sess.graph.get_tensor_by_name(n + ":0"))
for n in node.input])
model.add(layer)
except:
print('Could not add layer: ', node.op)
# Save the Keras model as an HDF5 file
model.save(h5_file_path)
# Example usage:
pb_file_path = "/path/to/your/model.pb"
h5_file_path = "/path/to/save/your/model.h5"
pb_to_h5(pb_file_path, h5_file_path)
```
使用时需将`pb_file_path`和`h5_file_path`替换为实际的文件路径。
阅读全文