对于带权无向图 G = (V, E),M 是 G 的最小生成树,则 M 中任意两点 V1 到 V2 的路径一定是它们之间的最短路径。

时间: 2024-03-02 15:48:56 浏览: 168
这个结论是错误的。在带权无向图 G = (V, E) 中,如果 M 是 G 的最小生成树,M 中任意两点 V1 到 V2 的路径不一定是它们之间的最短路径。因为最小生成树是基于边权值构建的,而最短路径是基于点权值计算的,两者的权值计算方式不同。 例如,考虑下面这个图: ``` 1 A ------ B |\ | | \ | | \ | 2 | \ | | \ | | \ | | \ | C ------ D 3 ``` 其中,边权值表示在两个顶点之间的距离,顶点 A 到顶点 D 的最短路径是 A -> C -> D,路径长度为 4,而最小生成树是 A -> C -> B -> D,路径长度为 5。因此,M 中任意两点 V1 到 V2 的路径不一定是它们之间的最短路径。
相关问题

用c语言写 以邻接表位存储结构实现无向图给定一个带权图,求其最小生成树

要求一个带权无向图的最小生成树,可以使用 Prim 或 Kruskal 算法,下面给出使用 Prim 算法的代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 #define INF 0x3f3f3f3f // 无穷大 // 边的定义 typedef struct edge { int v1, v2; // 边的两个端点 int weight; // 权值 } Edge; // 邻接表中的边的定义 typedef struct edgeNode { int adjvex; // 邻接点编号 int weight; // 权值 struct edgeNode *next; // 指向下一个邻接点的指针 } EdgeNode; // 邻接表中顶点的定义 typedef struct vertexNode { int data; // 顶点的数据 EdgeNode *firstEdge; // 指向第一个邻接点的指针 } VertexNode; // 邻接表的定义 typedef struct { VertexNode adjList[MAX_VERTEX_NUM]; // 邻接表数组 int vertexNum, edgeNum; // 顶点数和边数 } Graph; // 创建一个图 void createGraph(Graph *G) { printf("请输入顶点数和边数:"); scanf("%d%d", &G->vertexNum, &G->edgeNum); getchar(); // 初始化邻接表 for (int i = 0; i < G->vertexNum; i++) { printf("请输入第%d个顶点的值:", i); scanf("%d", &G->adjList[i].data); G->adjList[i].firstEdge = NULL; getchar(); } // 建立边表 printf("请依次输入每条边的起点、终点和权值:\n"); for (int i = 0; i < G->edgeNum; i++) { Edge e; scanf("%d%d%d", &e.v1, &e.v2, &e.weight); getchar(); // 新建一个边节点 EdgeNode *p = (EdgeNode *)malloc(sizeof(EdgeNode)); p->adjvex = e.v2; p->weight = e.weight; p->next = G->adjList[e.v1].firstEdge; // 插入到表头 G->adjList[e.v1].firstEdge = p; // 因为是无向图,所以要对称添加一条反向的边 EdgeNode *q = (EdgeNode *)malloc(sizeof(EdgeNode)); q->adjvex = e.v1; q->weight = e.weight; q->next = G->adjList[e.v2].firstEdge; // 插入到表头 G->adjList[e.v2].firstEdge = q; } } // Prim 算法求最小生成树 void prim(Graph G) { bool visited[MAX_VERTEX_NUM] = {false}; // 标记每个顶点是否已访问 int dist[MAX_VERTEX_NUM]; // 保存从已选顶点到未选顶点的最小权值 int parent[MAX_VERTEX_NUM]; // 记录最小生成树的边 // 初始化 for (int i = 0; i < G.vertexNum; i++) { dist[i] = INF; } visited[0] = true; // 从第一个顶点出发 // 处理第一个顶点的邻接点 EdgeNode *p = G.adjList[0].firstEdge; while (p != NULL) { dist[p->adjvex] = p->weight; parent[p->adjvex] = 0; // 记录边 p = p->next; } // 从剩下的 n-1 个顶点中选出 n-1 条边 for (int i = 1; i < G.vertexNum; i++) { int v = -1; // 选出一个未访问的顶点,使得 dist[v] 最小 int min = INF; // 找到 dist 最小的顶点 for (int j = 0; j < G.vertexNum; j++) { if (!visited[j] && dist[j] < min) { v = j; min = dist[j]; } } if (v == -1) { // 找不到未访问的顶点,说明图不连通 printf("图不连通!\n"); return; } visited[v] = true; // 更新从已选顶点到未选顶点的最小权值 p = G.adjList[v].firstEdge; while (p != NULL) { if (!visited[p->adjvex] && p->weight < dist[p->adjvex]) { dist[p->adjvex] = p->weight; parent[p->adjvex] = v; // 记录边 } p = p->next; } } // 输出最小生成树 printf("最小生成树的边为:\n"); int weightSum = 0; for (int i = 1; i < G.vertexNum; i++) { printf("(%d, %d, %d)\n", parent[i], i, dist[i]); weightSum += dist[i]; } printf("最小权值和为:%d\n", weightSum); } int main() { Graph G; createGraph(&G); prim(G); return 0; } ``` 在代码中,我们使用了邻接表来存储图,并使用 Prim 算法求出了最小生成树。在 Prim 算法中,我们使用了一个 dist 数组来保存从已选顶点到未选顶点的最小权值,使用一个 parent 数组来记录最小生成树的边。在每次选择一个顶点时,我们需要更新 dist 数组,然后根据 dist 数组找到最小的 dist 值对应的顶点,将其加入已选顶点集合中,并将其邻接点的 dist 值更新,直至所有顶点都被加入已选顶点集合中。最后,我们输出最小生成树的边以及权值和。 需要注意的是,在 Prim 算法中,我们需要处理图不连通的情况,即在选择一个顶点时,找不到未访问的顶点。此时,我们需要输出提示信息并结束算法。

解释代码( for(int k=0;k<G.arcnum;k++) { int i,j; char v1,v2; int c; printf("请输入(Vi,Vj)对应的顶点及长度:\n"); cin>>v1>>v2>>c; //输入一条边依附的两个顶点及权值 Edge[k].Head=v1; Edge[k].Tail=v2; Edge[k].lowcost=c; i = LocateVex(G,v1); j = LocateVex(G,v2); G.arcs[i][j]=G.arcs[j][i]=c; } } typedef struct Closedge { VerTexType adjvex;//最小边在U中的那个顶点 ArcType lowcost;//最小边上的权值 }closedge[MVNum]; int Min(closedge SZ,AMGraph G)//求出第k个顶点,closedge[k]中存有当前最小边 { int i=0,j,k,min; while(!SZ[i].lowcost) i++; min=SZ[i].lowcost; k=i; for(j=i+1;j<G.vexnum;j++) { if(SZ[j].lowcost>0) { if(min>SZ[j].lowcost) { min=SZ[j].lowcost; k=j; } } } return k; } void prim(AMGraph G,VerTexType u)//p算法 {//无向图G以邻接矩阵形式存储,从顶点u出发构造G的最小生成树T,输出T的各条边 closedge closedge; int k=LocateVex(G,u);//k为顶点u的下标 for(int j=0;j<G.vexnum;j++)//对V-U的每一个顶点vj,初始化closedge[j] { closedge[j].adjvex=u; closedge[j].lowcost=G.arcs[k][j]; } closedge[k].lowcost=0;//初始,U={u} )

这段代码实现了Prim算法,用于求解无向图的最小生成树。首先,通过for循环和LocateVex函数输入每条边的信息,包括边的起点、终点和权值,并将这些信息存储在Edge数组中。接下来,定义了一个结构体Closedge用于存储最小生成树的各个节点的信息,包括最小边在U中的那个顶点和最小边上的权值。Min函数用于求出第k个顶点,closedge[k]中存有当前最小边。最后,prim函数用于构造最小生成树,首先对V-U的每个顶点vj进行初始化,将closedge[j].adjvex设置为起点u,将closedge[j].lowcost设置为起点u到vj的距离。然后将起点u加入U中,将closedge[k].lowcost设置为0,表示已经访问过。
阅读全文

相关推荐

最新推荐

recommend-type

图论中的概念和重要算法

连通图是图中任意两个顶点都可以通过路径相互到达的图,无向图的强连通图则要求每个顶点都能到达图中的任何其他顶点,无论方向如何。如果图不是连通的,那么它会被分成若干个连通分量。 图的存储结构主要有两种:...
recommend-type

【java毕业设计】应急救援物资管理系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

基于java的音乐网站答辩PPT.pptx

基于java的音乐网站答辩PPT.pptx
recommend-type

基于Flexsim的公路交通仿真系统.zip

基于Flexsim软件开发的仿真系统,可供参考学习使用
recommend-type

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计.zip

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"