对于带权无向图 G = (V, E),M 是 G 的最小生成树,则 M 中任意两点 V1 到 V2 的路径一定是它们之间的最短路径。

时间: 2024-03-02 15:48:56 浏览: 52
这个结论是错误的。在带权无向图 G = (V, E) 中,如果 M 是 G 的最小生成树,M 中任意两点 V1 到 V2 的路径不一定是它们之间的最短路径。因为最小生成树是基于边权值构建的,而最短路径是基于点权值计算的,两者的权值计算方式不同。 例如,考虑下面这个图: ``` 1 A ------ B |\ | | \ | | \ | 2 | \ | | \ | | \ | | \ | C ------ D 3 ``` 其中,边权值表示在两个顶点之间的距离,顶点 A 到顶点 D 的最短路径是 A -> C -> D,路径长度为 4,而最小生成树是 A -> C -> B -> D,路径长度为 5。因此,M 中任意两点 V1 到 V2 的路径不一定是它们之间的最短路径。
相关问题

用c语言写 以邻接表位存储结构实现无向图给定一个带权图,求其最小生成树

要求一个带权无向图的最小生成树,可以使用 Prim 或 Kruskal 算法,下面给出使用 Prim 算法的代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 #define INF 0x3f3f3f3f // 无穷大 // 边的定义 typedef struct edge { int v1, v2; // 边的两个端点 int weight; // 权值 } Edge; // 邻接表中的边的定义 typedef struct edgeNode { int adjvex; // 邻接点编号 int weight; // 权值 struct edgeNode *next; // 指向下一个邻接点的指针 } EdgeNode; // 邻接表中顶点的定义 typedef struct vertexNode { int data; // 顶点的数据 EdgeNode *firstEdge; // 指向第一个邻接点的指针 } VertexNode; // 邻接表的定义 typedef struct { VertexNode adjList[MAX_VERTEX_NUM]; // 邻接表数组 int vertexNum, edgeNum; // 顶点数和边数 } Graph; // 创建一个图 void createGraph(Graph *G) { printf("请输入顶点数和边数:"); scanf("%d%d", &G->vertexNum, &G->edgeNum); getchar(); // 初始化邻接表 for (int i = 0; i < G->vertexNum; i++) { printf("请输入第%d个顶点的值:", i); scanf("%d", &G->adjList[i].data); G->adjList[i].firstEdge = NULL; getchar(); } // 建立边表 printf("请依次输入每条边的起点、终点和权值:\n"); for (int i = 0; i < G->edgeNum; i++) { Edge e; scanf("%d%d%d", &e.v1, &e.v2, &e.weight); getchar(); // 新建一个边节点 EdgeNode *p = (EdgeNode *)malloc(sizeof(EdgeNode)); p->adjvex = e.v2; p->weight = e.weight; p->next = G->adjList[e.v1].firstEdge; // 插入到表头 G->adjList[e.v1].firstEdge = p; // 因为是无向图,所以要对称添加一条反向的边 EdgeNode *q = (EdgeNode *)malloc(sizeof(EdgeNode)); q->adjvex = e.v1; q->weight = e.weight; q->next = G->adjList[e.v2].firstEdge; // 插入到表头 G->adjList[e.v2].firstEdge = q; } } // Prim 算法求最小生成树 void prim(Graph G) { bool visited[MAX_VERTEX_NUM] = {false}; // 标记每个顶点是否已访问 int dist[MAX_VERTEX_NUM]; // 保存从已选顶点到未选顶点的最小权值 int parent[MAX_VERTEX_NUM]; // 记录最小生成树的边 // 初始化 for (int i = 0; i < G.vertexNum; i++) { dist[i] = INF; } visited[0] = true; // 从第一个顶点出发 // 处理第一个顶点的邻接点 EdgeNode *p = G.adjList[0].firstEdge; while (p != NULL) { dist[p->adjvex] = p->weight; parent[p->adjvex] = 0; // 记录边 p = p->next; } // 从剩下的 n-1 个顶点中选出 n-1 条边 for (int i = 1; i < G.vertexNum; i++) { int v = -1; // 选出一个未访问的顶点,使得 dist[v] 最小 int min = INF; // 找到 dist 最小的顶点 for (int j = 0; j < G.vertexNum; j++) { if (!visited[j] && dist[j] < min) { v = j; min = dist[j]; } } if (v == -1) { // 找不到未访问的顶点,说明图不连通 printf("图不连通!\n"); return; } visited[v] = true; // 更新从已选顶点到未选顶点的最小权值 p = G.adjList[v].firstEdge; while (p != NULL) { if (!visited[p->adjvex] && p->weight < dist[p->adjvex]) { dist[p->adjvex] = p->weight; parent[p->adjvex] = v; // 记录边 } p = p->next; } } // 输出最小生成树 printf("最小生成树的边为:\n"); int weightSum = 0; for (int i = 1; i < G.vertexNum; i++) { printf("(%d, %d, %d)\n", parent[i], i, dist[i]); weightSum += dist[i]; } printf("最小权值和为:%d\n", weightSum); } int main() { Graph G; createGraph(&G); prim(G); return 0; } ``` 在代码中,我们使用了邻接表来存储图,并使用 Prim 算法求出了最小生成树。在 Prim 算法中,我们使用了一个 dist 数组来保存从已选顶点到未选顶点的最小权值,使用一个 parent 数组来记录最小生成树的边。在每次选择一个顶点时,我们需要更新 dist 数组,然后根据 dist 数组找到最小的 dist 值对应的顶点,将其加入已选顶点集合中,并将其邻接点的 dist 值更新,直至所有顶点都被加入已选顶点集合中。最后,我们输出最小生成树的边以及权值和。 需要注意的是,在 Prim 算法中,我们需要处理图不连通的情况,即在选择一个顶点时,找不到未访问的顶点。此时,我们需要输出提示信息并结束算法。

用Kruskal算法计算出无向图的最小生成树。输入:无输出:生成树的每条边及生成树的权值之和

好的,我可以帮你解决这个问题。Kruskal算法是一种贪心算法,用于计算无向图的最小生成树。其基本思想是从所有边中选择最小权值的边加入生成树中,直到生成树中包含了所有的顶点。 以下是Kruskal算法的详细步骤: 1. 将所有的边按照权值从小到大排序。 2. 初始化一个空的生成树。 3. 依次遍历排序后的边,如果这条边的两个端点不在同一个连通块中,则将这条边加入生成树中,并将这两个端点合并到同一个连通块中。 4. 重复步骤3,直到生成树中包含了所有的顶点。 接下来,我将给出一个使用Kruskal算法计算无向图最小生成树的Python代码: ```python def kruskal(graph): # 将所有边按照权值从小到大排序 edges = sorted(graph.edges, key=lambda e: e.weight) # 初始化每个点的连通块 parents = {v: v for v in graph.vertices} # 定义找父节点的函数 def find(parents, v): while v != parents[v]: v = parents[v] return v # 定义连接连通块的函数 def union(parents, v1, v2): p1, p2 = find(parents, v1), find(parents, v2) parents[p1] = p2 # 初始化生成树和权值之和 mst, weight = [], 0 # 遍历所有的边 for e in edges: if find(parents, e.start) != find(parents, e.end): # 如果两个端点不在同一个连通块中,则将这条边加入生成树中 mst.append(e) weight += e.weight # 将这两个端点合并到同一个连通块中 union(parents, e.start, e.end) # 返回生成树和权值之和 return mst, weight ``` 其中,`graph`表示输入的无向图,其包含了所有的顶点和边。`graph.edges`表示图中所有的边,`e.weight`表示边`e`的权值。在代码中,我们使用了一个`parents`字典来记录每个点所在的连通块。`find`函数用于查找某个点所在的连通块的根节点,`union`函数用于将两个点所在的连通块合并成一个。最后,我们遍历所有的边,如果这条边的两个端点不在同一个连通块中,则将它加入生成树中,并将这两个端点合并到同一个连通块中。最终,函数返回生成树和权值之和。 希望这个回答能够帮助到你!

相关推荐

最新推荐

recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

Mysql 数据库操作技术 简单的讲解一下

讲解数据库操作方面的基础知识,基于Mysql的,不是Oracle
recommend-type

flickr8k-test-gt.json

flickr8k数据集的flickr8k_test_gt.json文件
recommend-type

基于SSM+Vue的新能源汽车在线租赁管理系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明)

随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,新能源汽车在线租赁当然也不能排除在外。新能源汽车在线租赁是以实际运用为开发背景,运用软件工程开发方法,采用SSM技术构建的一个管理系统。整个开发过程首先对软件系统进行需求分析,得出系统的主要功能。接着对系统进行总体设计和详细设计。总体设计主要包括系统总体结构设计、系统数据结构设计、系统功能设计和系统安全设计等;详细设计主要包括模块实现的关键代码,系统数据库访问和主要功能模块的具体实现等。最后对系统进行功能测试,并对测试结果进行分析总结,及时改进系统中存在的不足,为以后的系统维护提供了方便,也为今后开发类似系统提供了借鉴和帮助。 本新能源汽车在线租赁采用的数据库是Mysql,使用SSM框架开发。在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。 关键词:新能源汽车在线租赁,SSM框架,Mysql 数据库
recommend-type

圆模态波束形成Matlab仿真程序

优化阵列信号处理下册:模态处理与方位估计的第11章的例1-10的matlab仿真程序
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。