myline = np.linspace(0, 6, 100)
时间: 2024-05-19 16:11:15 浏览: 159
This code creates an array called "myline" with 100 equally spaced numbers between 0 and 6 (inclusive). The numpy function "linspace" is used to generate this array.
相关问题
以下代码哪里出错了:import numpy as np from scipy.integrate import odeint from matplotlib import animation import matplotlib.pyplot as plt def f(y,t,G,M): return np.array([y[1], y[0]*y[3]**2-G*M/y[0]**2, y[3], -2*y[1]*y[3]/y[0]]) #初始条件 v0=0 #解微分方程 G,M=6.67e-11,2e30 theta0=0 t= np.linspace(0,20,200) r0=1.5e11 y0=[r0,0,theta0,np.sqrt(2*G*M/r0**3)] res=odeint(f,y0,t,args=(G,M)) x=res[:,0]*np.sin(res[:,2]) y=res[:,0]*np.cos(res[:,2]) #画图 fig=plt.figure() plt.axis([-5*r0,5*r0,-5*r0,5*r0]) myline,=plt.plot([],[],'b',lw=2) mypoint,=plt.plot([],[],'ro',ms=20) def animate(i): mypoint.set_data([x[i],y[i]]) myline.set_data(x[:i],y[:i]) return mypoint,myline anim=animation.FuncAnimation(fig,animate,frames=len(t),interval=100) plt.show()
代码中缺少空格,应该在第一行的 import numpy as np 和 from scipy.integrate import odeint 之间加一个空格。正确代码如下:
```
import numpy as np
from scipy.integrate import odeint
from matplotlib import animation
import matplotlib.pyplot as plt
def f(y,t,G,M):
return np.array([y[1],
y[0]*y[3]**2-G*M/y[0]**2,
y[3],
-2*y[1]*y[3]/y[0]])
#初始条件 v0=0
#解微分方程
G,M=6.67e-11,2e30
theta0=0
t= np.linspace(0,20,200)
r0=1.5e11
y0=[r0,0,theta0,np.sqrt(2*G*M/r0**3)]
res=odeint(f,y0,t,args=(G,M))
x=res[:,0]*np.sin(res[:,2])
y=res[:,0]*np.cos(res[:,2])
#画图
fig=plt.figure()
plt.axis([-5*r0,5*r0,-5*r0,5*r0])
myline,=plt.plot([],[],'b',lw=2)
mypoint,=plt.plot([],[],'ro',ms=20)
def animate(i):
mypoint.set_data([x[i],y[i]])
myline.set_data(x[:i],y[:i])
return mypoint,myline
anim=animation.FuncAnimation(fig,animate,frames=len(t),interval=100)
plt.show()
```
def temp(filename,x,dic): path='excelFile/'+filename df = pandas.read_excel(path,header=None) data = [] datax = df.iloc[0].tolist() datay=df.iloc[1].tolist() transInt(datax) transInt(datay) slope,intercept,r,p,std_err=stats.linregress(datax,datay) def myfunc(datax): return slope*datax+intercept mymodel=list(map(myfunc,datax)) plt.scatter(datax,datay) plt.plot(datax,mymodel) print(x) result=myfunc(int(x)) if r>=0.7 or r<=-0.7: count=2 while count<6 : mymodel_2=numpy.poly1d(numpy.polyfit(datax,datay,count)) myline=numpy.linspace(min(datax),max(datay),100) r2=r2_score(datay,mymodel_2(datax)) plt.scatter(datax,datay) plt.plot(myline,mymodel_2(myline)) result=mymodel_2(int(x)) if r2>=0.7 or r2<=-0.7: break plt.savefig('figs/result.png') dic['Y']=str(result)这段代码报错main thread is not in main loop
这个错误通常是由于在非主线程中使用了 matplotlib 库的某些功能导致的。为了避免这个错误,您可以在调用 `plt` 绘图函数之前,添加以下两行代码:
```python
import matplotlib
matplotlib.use('Agg')
```
这样就可以将 matplotlib 的后端设置为 "Agg",这是一种不需要图形界面的后端,可以避免在非主线程中使用 matplotlib 函数时出现报错。最终代码应该是这样的:
```python
import matplotlib
matplotlib.use('Agg')
import pandas
import numpy
from scipy import stats
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
def temp(filename, x, dic):
path = 'excelFile/' + filename
df = pandas.read_excel(path, header=None)
data = []
datax = df.iloc[0].tolist()
datay = df.iloc[1].tolist()
transInt(datax)
transInt(datay)
slope, intercept, r, p, std_err = stats.linregress(datax, datay)
def myfunc(datax):
return slope * datax + intercept
mymodel = list(map(myfunc, datax))
plt.scatter(datax, datay)
plt.plot(datax, mymodel)
print(x)
result = myfunc(int(x))
if r >= 0.7 or r <= -0.7:
count = 2
while count < 6:
mymodel_2 = numpy.poly1d(numpy.polyfit(datax, datay, count))
myline = numpy.linspace(min(datax), max(datay), 100)
r2 = r2_score(datay, mymodel_2(datax))
plt.scatter(datax, datay)
plt.plot(myline, mymodel_2(myline))
result = mymodel_2(int(x))
if r2 >= 0.7 or r2 <= -0.7:
break
plt.savefig('figs/result.png')
dic['Y'] = str(result)
```
这样就可以避免这个报错了。
阅读全文