已知树结点为互不相等且不等于0的整数。请编写程序找出非空树中两个结点的最近公共祖先。例如对于图1(a)所示的树t,结点1和2的最近公共祖先是5;结点2和4的最近公共祖先是8。

时间: 2023-05-01 14:04:32 浏览: 187
题目描述:已知树结点为互不相等且不等于0的整数。编写程序找出非空树中两个结点的最近公共祖先。例如对于图1(a)所示的树t,结点1和2的最近公共祖先是节点5;结点2和4的最近公共祖先是结点8。 解题思路:可以使用二叉树遍历的方法,先找到从根节点到目标节点的路径,再比较两个路径找到最近公共祖先节点。如果是非二叉树的情况,可以先将树转化为二叉树再处理。
相关问题

已知一棵非空二叉树结点的数据域为不等于0的整数,请编写程序找出该二叉树中叶结点数据值之和最大的层。

首先,我们需要遍历整棵二叉树,计算每一层的叶结点数据值之和。可以使用广度优先搜索(BFS)来实现。具体步骤如下: 1. 定义一个队列,将根节点入队。 2. 循环遍历队列中的节点,对于每个节点,将其左右子节点入队。 3. 判断当前节点是否为叶节点,如果是,则将其数据值加入当前层的叶结点数据值之和。 4. 判断当前节点是否为当前层的最后一个节点,如果是,则记录当前层的叶结点数据值之和,并将其与之前的最大值比较,更新最大值和最大值所在的层数。 5. 循环结束后,返回最大值所在的层数即可。 下面是具体的代码实现: ``` class TreeNode: def __init__(self, val=, left=None, right=None): self.val = val self.left = left self.right = right def max_sum_level(root: TreeNode) -> int: if not root: return -1 max_sum = float('-inf') max_level = level = queue = [root] while queue: level += 1 level_sum = size = len(queue) for i in range(size): node = queue.pop() if not node.left and not node.right: level_sum += node.val if node.left: queue.append(node.left) if node.right: queue.append(node.right) if level_sum > max_sum: max_sum = level_sum max_level = level return max_level ``` 在上面的代码中,我们定义了一个 `TreeNode` 类来表示二叉树的节点。`max_sum_level` 函数接收一个根节点作为参数,返回叶结点数据值之和最大的层。 在函数中,我们首先判断根节点是否为空,如果是,则直接返回 -1。然后,我们定义了三个变量:`max_sum` 表示叶结点数据值之和的最大值,`max_level` 表示叶结点数据值之和最大的层,`level` 表示当前层的层数,初始值为 。 接下来,我们定义了一个队列 `queue`,将根节点入队。然后,我们开始循环遍历队列中的节点。对于

已知带头结点的非空单链表中存放着若干整数,请找出该链表中倒数第k个元素

要找出链表中倒数第k个元素,可以使用快慢指针的方法。 首先,定义两个指针fast和slow,同时指向链表的头结点。然后,让fast指针向前移动k个位置,使得fast和slow之间相隔k个节点。 接下来,同时移动fast和slow指针,直到fast指针到达链表的末尾。此时,slow指针所指向的节点就是倒数第k个元素。 这是因为,在fast指针到达链表末尾之前,fast指针先于slow指针移动了k个位置,所以fast和slow之间相隔k个节点。当fast指针到达末尾时,slow指针相对于fast指针也就是倒数第k个节点。 以下是具体的实现步骤: 1. 定义两个指针fast和slow,同时指向链表的头结点。 2. 让fast指针向前移动k个位置,即执行k次fast = fast.next操作。 3. 同时移动fast和slow指针,直到fast指针到达链表的末尾,即执行while循环:while(fast != null){ fast = fast.next; slow = slow.next; } 4. 返回slow指针所指向的节点。 通过上述步骤,就能够找到链表中倒数第k个元素。

相关推荐

最新推荐

recommend-type

二叉树中两结点最近的共同祖先算法

拟定出合适的二叉树的输入形式;  构造出相应的求共同祖先的算法;  能够以直观的形式观察到所建立的二叉树; 采用Microsoft Visual C++ 6.0 编译环境进行调试运行。
recommend-type

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动
recommend-type

TLBB服务端综合工具

潇湘综合工具
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见