将这个视频进行光流法追踪代码 c
时间: 2024-03-05 08:51:00 浏览: 65
好的,下面是一个简单的 C# 代码示例,用于对视频进行光流法追踪:
```csharp
using System;
using System.Drawing;
using System.Windows.Forms;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
namespace OpticalFlowTracking
{
public partial class Form1 : Form
{
private VideoCapture _capture;
private Mat _oldFrame;
private Mat _oldGray;
private PointF[] _p0;
public Form1()
{
InitializeComponent();
}
private void btnOpen_Click(object sender, EventArgs e)
{
// 打开视频文件
OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.Filter = "Video Files (*.mp4;*.avi;*.wmv)|*.mp4;*.avi;*.wmv";
if (openFileDialog.ShowDialog() != DialogResult.OK)
return;
_capture = new VideoCapture(openFileDialog.FileName);
// 获取第一帧图像
Mat frame = new Mat();
_capture.Read(frame);
_oldFrame = frame.Clone();
_oldGray = new Mat();
CvInvoke.CvtColor(_oldFrame, _oldGray, ColorConversion.Bgr2Gray);
// 定义光流跟踪的初始点
_p0 = CvInvoke.GoodFeaturesToTrack(_oldGray, 100, 0.3, 7, null, 7, false, 0.04);
// 显示图像
pictureBox1.Image = _oldFrame.Bitmap;
}
private void btnStart_Click(object sender, EventArgs e)
{
if (_capture == null)
return;
// 创建一个Lucas-Kanade光流算法对象
var lkParams = new MCvTermCriteria(10, 0.03);
var winSize = new Size(15, 15);
var maxLevel = 2;
// 创建一个空的掩膜图像
var mask = new Mat(_oldFrame.Size, DepthType.Cv8U, 3);
while (true)
{
// 获取当前帧图像
Mat frame = new Mat();
_capture.Read(frame);
if (frame.IsEmpty)
break;
// 将当前帧转换为灰度图像
var frameGray = new Mat();
CvInvoke.CvtColor(frame, frameGray, ColorConversion.Bgr2Gray);
// 计算光流向量
var p1 = new PointF[_p0.Length];
byte[] status;
float[] err;
CvInvoke.CalcOpticalFlowPyrLK(_oldGray, frameGray, _p0, p1, out status, out err, winSize, maxLevel, lkParams);
// 选取好的光流向量
var goodNew = new PointF[_p0.Length];
var goodOld = new PointF[_p0.Length];
int count = 0;
for (int i = 0; i < _p0.Length; i++)
{
if (status[i] == 1)
{
goodNew[count] = p1[i];
goodOld[count] = _p0[i];
count++;
}
}
Array.Resize(ref goodNew, count);
Array.Resize(ref goodOld, count);
// 绘制光流轨迹
mask.SetTo(new MCvScalar(0, 0, 0));
for (int i = 0; i < goodNew.Length; i++)
{
mask.Draw(new LineSegment2D(Point.Round(goodNew[i]), Point.Round(goodOld[i])), new Bgr(Color.Green), 2);
mask.Draw(new CircleF(Point.Round(goodNew[i]), 5), new Bgr(Color.Red), -1);
}
// 将光流轨迹叠加到原图像上
var img = new Mat();
CvInvoke.Add(frame, mask, img);
// 显示图像
pictureBox1.Image = img.Bitmap;
Application.DoEvents();
// 更新下一帧的跟踪点
_oldGray = frameGray.Clone();
_p0 = goodNew;
}
}
private void btnStop_Click(object sender, EventArgs e)
{
if (_capture == null)
return;
// 释放资源
_capture.Dispose();
_capture = null;
_oldFrame.Dispose();
_oldGray.Dispose();
}
}
}
```
需要注意的是,在实际应用中,需要根据视频的具体情况调整光流算法的参数,以获得更好的效果。同时,使用 Emgu CV 库进行图像处理和显示,需要注意库的版本和安装方式。
阅读全文