resnet18模型中加入正则化的代码
时间: 2023-06-10 13:05:52 浏览: 330
可以通过在网络的定义中加入正则化方法来实现。常用的正则化方法包括L1正则化和L2正则化,可以在网络定义中通过调用相关的函数来实现。比如,在PyTorch中,在定义网络时可以在每个卷积层或全连接层后添加一个正则化方法,如下所示:
``` python
import torch.nn as nn
class ResNet18(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
# Residual block 1
self.conv2_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2_1 = nn.BatchNorm2d(64)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2_2 = nn.BatchNorm2d(64)
self.relu2_2 = nn.ReLU(inplace=True)
self.residual1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(64)
)
# Residual block 2
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
self.bn3_1 = nn.BatchNorm2d(128)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3_2 = nn.BatchNorm2d(128)
self.relu3_2 = nn.ReLU(inplace=True)
self.residual2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(128)
)
# Residual block 3
self.conv4_1 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
self.bn4_1 = nn.BatchNorm2d(256)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn4_2 = nn.BatchNorm2d(256)
self.relu4_2 = nn.ReLU(inplace=True)
self.residual3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(256)
)
# Residual block 4
self.conv5_1 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.bn5_1 = nn.BatchNorm2d(512)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn5_2 = nn.BatchNorm2d(512)
self.relu5_2 = nn.ReLU(inplace=True)
self.residual4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(512)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
self.dropout = nn.Dropout(p=0.5) # 添加dropout正则化
self.relu = nn.ReLU(inplace=True)
self.init_weights()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# Residual block 1
residual = self.residual1(x)
x = self.conv2_1(x)
x = self.bn2_1(x)
x = self.relu2_1(x)
x = self.conv2_2(x)
x = self.bn2_2(x)
x += residual
x = self.relu2_2(x)
# Residual block 2
residual = self.residual2(x)
x = self.conv3_1(x)
x = self.bn3_1(x)
x = self.relu3_1(x)
x = self.conv3_2(x)
x = self.bn3_2(x)
x += residual
x = self.relu3_2(x)
# Residual block 3
residual = self.residual3(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x += residual
x = self.relu4_2(x)
# Residual block 4
residual = self.residual4(x)
x = self.conv5_1(x)
x = self.bn5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.bn5_2(x)
x += residual
x = self.relu5_2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.dropout(x) # 加上dropout
return x
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
```
这样,在每个全连接层后面都会添加一个dropout操作,用于防止过拟合。
阅读全文