pyspark kmeans聚类
时间: 2023-06-21 09:09:59 浏览: 127
在 PySpark 中使用 KMeans 聚类算法可以通过以下步骤实现:
1. 导入必要的库和模块
```python
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
from pyspark.ml.feature import VectorAssembler
```
2. 加载数据集并进行特征工程
```python
data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("path/to/dataset")
assembler = VectorAssembler(inputCols=data.columns, outputCol="features")
feature_data = assembler.transform(data).select("features")
```
3. 训练 KMeans 模型并进行预测
```python
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(feature_data)
predictions = model.transform(feature_data)
```
4. 评估模型的性能
```python
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictions)
print("Silhouette with squared euclidean distance = " + str(silhouette))
```
完整的代码如下所示:
```python
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
from pyspark.ml.feature import VectorAssembler
# 加载数据集并进行特征工程
data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("path/to/dataset")
assembler = VectorAssembler(inputCols=data.columns, outputCol="features")
feature_data = assembler.transform(data).select("features")
# 训练 KMeans 模型并进行预测
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(feature_data)
predictions = model.transform(feature_data)
# 评估模型的性能
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictions)
print("Silhouette with squared euclidean distance = " + str(silhouette))
```
阅读全文