ap聚类算法python
时间: 2023-09-13 22:13:53 浏览: 96
AP聚类算法
以下是用Python实现AP聚类算法的示例代码:
```
import numpy as np
# 计算相似度矩阵
def cal_similarity(data):
n = len(data)
similarity = np.zeros((n, n))
for i in range(n):
for j in range(n):
similarity[i][j] = -np.linalg.norm(data[i] - data[j])
return similarity
# 计算responsibility
def cal_responsibility(similarity, damping):
n = similarity.shape[0]
a = np.zeros((n, n))
for i in range(n):
max_s = -np.inf
max_j = -1
for j in range(n):
if j != i:
if similarity[i][j] > max_s:
max_s = similarity[i][j]
max_j = j
for j in range(n):
if j == max_j:
a[i][j] = (1 - damping) * (similarity[i][j] - max_s)
else:
a[i][j] = (1 - damping) * similarity[i][j]
return a
# 计算availability
def cal_availability(responsibility, damping):
n = responsibility.shape[0]
r_new = np.zeros((n, n))
for j in range(n):
r_new[:, j] = responsibility[:, j] + np.maximum(0, np.diag(responsibility) - responsibility[j, j])
r_new[j, j] = np.sum(np.maximum(0, responsibility[j, :] + np.diag(responsibility)[:j] + np.diag(responsibility)[j+1:]))
a_new = damping * r_new + (1 - damping) * responsibility
return a_new, r_new
# AP聚类算法
def ap_clustering(data, max_iter=1000, damping=0.9, convergence_iter=10, convergence_tol=1e-6):
similarity = cal_similarity(data)
n = similarity.shape[0]
responsibility = np.zeros((n, n))
availability = np.zeros((n, n))
cluster_centers_indices = []
for i in range(max_iter):
if i % convergence_iter == 0:
tmp = responsibility + availability
if np.allclose(tmp, tmp.diagonal().reshape(n, -1)):
break
# 计算responsibility
responsibility = cal_responsibility(similarity, damping)
# 计算availability
availability_new, responsibility_new = cal_availability(responsibility, damping)
availability = availability_new
responsibility = responsibility_new
# 计算clusters
clusters = np.argmax(responsibility + availability, axis=1)
# 计算cluster centers
cluster_centers_indices = []
for k in range(n):
if k == clusters[k]:
cluster_centers_indices.append(k)
# 检查是否收敛
if len(cluster_centers_indices) > 0:
cluster_centers = data[cluster_centers_indices]
dist = np.zeros((n, len(cluster_centers)))
for k in range(len(cluster_centers)):
dist[:, k] = -np.linalg.norm(data - cluster_centers[k], axis=1)
new_clusters = np.argmax(dist, axis=1)
if np.all(clusters == new_clusters):
break
clusters = new_clusters
return cluster_centers_indices, clusters
```
其中,`data`是一个二维数组,表示待聚类的数据。`max_iter`表示最大迭代次数,`damping`表示阻尼系数,`convergence_iter`表示检查收敛的迭代次数,`convergence_tol`表示收敛阈值。函数返回两个数组,`cluster_centers_indices`表示聚类中心的索引,`clusters`表示每个数据点所属的簇的索引。
阅读全文