AP聚类算法python
时间: 2023-10-14 10:29:53 浏览: 106
AP聚类算法(Affinity Propagation)是一种基于数据点之间的消息传递机制的聚类算法。该算法不需要指定聚类数目,且适用于不同形状、密度和大小的聚类。下面是AP聚类算法的Python实现:
```python
import numpy as np
def apcluster(data, max_iter, conv_iter):
n = data.shape[0] # 样本数目
s = np.zeros((n, n)) # 相似度矩阵
r = np.zeros((n, n)) # 负责度矩阵
a = np.zeros((n, n)) # 归属度矩阵
e = np.zeros((n, max_iter)) # 每一次迭代的能量值
# 计算相似度矩阵
for i in range(n):
for j in range(n):
s[i, j] = -np.sum((data[i] - data[j]) ** 2)
# 初始化消息
tmp = np.zeros((n, n))
for i in range(n):
tmp[i] = s[i] - np.max(s[i])
r = tmp.copy()
for i in range(n):
r[i, np.argmax(tmp[i])] = s[i, np.argmax(tmp[i])]
# 迭代
for it in range(max_iter):
# 更新归属度矩阵
tmp = s + r
a_new = np.zeros((n, n))
for i in range(n):
a_new[i, np.argmax(tmp[:, i])] = 1
tmp2 = np.sum(a_new, axis=0)
for i in range(n):
a_new[i, i] = 1 if tmp2[i] > 0 else 0
a = 0.5 * a + 0.5 * a_new
# 更新负责度矩阵
tmp = np.maximum(0, a)
tmp2 = np.sum(tmp, axis=0) - tmp
r = np.minimum(0, tmp2)
# 计算能量值
e_new = np.sum(a * (s + r))
e[:, it] = e_new
# 判断收敛
if it > conv_iter and np.sum(e[:, it - conv_iter] - e[:, it]) < 1e-6:
break
# 聚类
c = np.argmax(a + r, axis=1)
return c
```
其中,`data`是样本数据的矩阵,每一行代表一个样本,`max_iter`是最大迭代次数,`conv_iter`是判断收敛的迭代次数。该函数返回样本的聚类结果。
阅读全文