用pytorch写一个pspnet
时间: 2023-06-01 09:07:11 浏览: 97
非常乐意帮助您编写PSPNet,以下是一份简单的PyTorch代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = F.relu(x)
return x
class PSPModule(nn.Module):
def __init__(self, in_channels, out_channels, pool_sizes=[1, 2, 3, 6]):
super(PSPModule, self).__init__()
self.pool_layers = nn.ModuleList()
for pool_size in pool_sizes:
self.pool_layers.append(nn.AdaptiveAvgPool2d(pool_size))
self.conv = nn.Conv2d(in_channels * (len(pool_sizes) + 1), out_channels, kernel_size=1)
def forward(self, x):
input_size = x.size()
pool_outs = [x]
for pool_layer in self.pool_layers:
pool_outs.append(F.interpolate(pool_layer(x), size=input_size[2:], mode='bilinear', align_corners=True))
x = torch.cat(pool_outs, dim=1)
x = self.conv(x)
return x
class PSPNet(nn.Module):
def __init__(self, num_classes):
super(PSPNet, self).__init__()
self.conv1 = ConvBlock(3, 64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 256)
self.conv4 = ConvBlock(256, 512)
self.conv5 = ConvBlock(512, 1024)
self.psp = PSPModule(1024, 1024)
self.reduce = nn.Conv2d(2048, 512, kernel_size=1)
self.dropout = nn.Dropout(p=0.1)
self.cls = nn.Conv2d(512, num_classes, kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.psp(x)
x = self.reduce(x)
x = self.dropout(x)
x = self.cls(x)
return F.interpolate(x, size=x.size()[2:], mode='bilinear', align_corners=True)
```
这个示例包括三个主要部分:ConvBlock,PSPModule和PSPNet模型。 ConvBlock是一个简单的卷积模块,PSPModule实现了PSPNet中的池化金字塔模块,而PSPNet是PSPNet主模型的实现,它使用ConvBlock和PSPModule构建了特征提取器和分类头。您可以通过调整不同层的深度和通道数来调整模型的大小和复杂度。
在使用此代码之前,请确保您已经安装了最新的PyTorch版本,以及其他必要的Python库和依赖项。祝您编写愉快!
阅读全文